Skip to main content

Personalized Content Generation Service - Comprehensive Plan

Executive Summary

This document outlines the comprehensive plan for developing a Personalized Content Generation Service that will enable automated creation of marketing content, sales materials, and compliance-checked content. The service leverages existing capabilities and open-source libraries to deliver a production-ready solution within 6-8 weeks.

Market Opportunity

  • Market Size: Content marketing AI projected at $12B by 2028
  • Business Impact: Personalization drives 40% higher conversion rates
  • Target Users: Marketing teams, sales organizations, content creators

Current Readiness Assessment

  • ✅ Report Generator: 80% (well-structured, multi-format support)
  • ✅ Content Formatting: 85% (structured responses, templates)
  • ✅ User Segmentation: 75% (comprehensive analytics)
  • ⚠️ Content Templates: Need Development (1-2 weeks)
  • ⚠️ Brand Voice System: Need Development (2-3 weeks)

1. What We Already Have

1.1 Report Generation Capabilities ✅

Location:

  • packages/agents/process_agents/report_generator.py
  • packages/analytics/reporting.py
  • packages/use_case_components/generators/report_generator.py

Capabilities:

  • ✅ Multi-format output (Markdown, HTML, PDF, JSON, DOCX)
  • ✅ Executive summary generation
  • ✅ Structured sections with citations
  • ✅ Quality scoring system
  • ✅ Template-based generation
  • ✅ LLM-powered synthesis

Integration Points:

# Research Report Generator
from packages.agents.process_agents.report_generator import ReportGenerator

generator = ReportGenerator()
report = await generator.generate_report(
plan=research_plan,
findings=findings,
output_format=ReportFormat.MARKDOWN
)

Strengths:

  • Proven report generation with citations
  • Multi-format export (PDF, DOCX, HTML, Markdown)
  • Quality scoring built-in
  • LLM-based synthesis

Gaps:

  • Not optimized for marketing content
  • Limited personalization by user segment
  • No brand voice consistency enforcement

1.2 Content Formatting & Structuring ✅

Location:

  • packages/rag/structured_formatting.py
  • packages/rag/response_visualization.py

Capabilities:

  • ✅ Response type detection (summary, guide, comparison, etc.)
  • ✅ Content parsing into structured sections
  • ✅ Table of contents generation
  • ✅ Navigation structure
  • ✅ Formatting configuration system

Integration Points:

from packages.rag.structured_formatting import StructuredFormatter, FormattingConfig

formatter = StructuredFormatter(config=FormattingConfig())
response = await formatter.format_response(
text=generated_content,
title="Marketing Blog Post"
)

Strengths:

  • Sophisticated content structuring
  • Multiple response types
  • TOC and navigation generation
  • Configurable formatting

Gaps:

  • Not designed for marketing-specific formats
  • Limited template system

1.3 User Segmentation & Personalization ✅

Location:

  • packages/analytics/segmentation.py
  • packages/search_interface/personalization.py

Capabilities:

  • ✅ User profiling (power user, casual, researcher, etc.)
  • ✅ Behavior clustering (K-Means, DBSCAN)
  • ✅ Engagement level classification
  • ✅ Preference tracking
  • ✅ User journey analysis

Integration Points:

from packages.analytics.segmentation import UserSegmentation

segmentation = UserSegmentation(analytics_engine)
profiles = await segmentation.create_user_profiles(days=90)

# Use profiles for personalization
for profile in profiles:
print(f"User: {profile.user_id}, Type: {profile.user_type}")

Strengths:

  • Comprehensive user classification
  • Machine learning-based clustering
  • Behavioral pattern analysis
  • Preference learning

Gaps:

  • Not integrated with content generation
  • Missing content preference mapping
  • No audience segment templates

1.4 Email Drafting System ✅

Location:

  • packages/agents/process_agents/email_drafter.py

Capabilities:

  • ✅ Template-based email generation
  • ✅ RAG-powered context retrieval
  • ✅ Tone matching (professional, friendly, apologetic)
  • ✅ Quality scoring (confidence, completeness, appropriateness)
  • ✅ LLM personalization

Integration Points:

from packages.agents.process_agents.email_drafter import EmailDrafter

drafter = EmailDrafter(retriever=rag_retriever)
draft = await drafter.draft_response(
email=incoming_email,
classification=email_classification
)

Strengths:

  • Proven email generation pipeline
  • Template + RAG + LLM architecture
  • Tone and quality scoring
  • Context-aware generation

Gaps:

  • Limited to email responses (not marketing emails)
  • No multi-channel content support
  • Missing A/B testing integration

1.5 Prompt Optimization ✅

Location:

  • packages/prompts/optimization.py
  • packages/prompts/dspy_modules.py

Capabilities:

  • ✅ DSPy-based prompt optimization
  • ✅ Bootstrap few-shot learning
  • ✅ MIPRO optimization
  • ✅ Metric-driven evaluation

Integration Points:

from packages.prompts import PromptOptimizer, OptimizationConfig

optimizer = PromptOptimizer(config=OptimizationConfig())
optimized_module = optimizer.optimize(
module=content_generator,
training_data=examples,
metric=quality_metric
)

Strengths:

  • Automatic prompt optimization
  • Data-driven improvement
  • Evaluation framework

Gaps:

  • Not specifically tuned for content generation
  • Need marketing-specific metrics

1.6 Compliance & Validation ✅

Location:

  • packages/rag/compliance_agent.py
  • packages/rag/compliance_config.py
  • packages/rag/input_sanitization.py
  • config/guardrails.yml

Capabilities:

  • ✅ Compliance checking pipeline
  • ✅ Regulatory validation
  • ✅ Input sanitization
  • ✅ Safety guardrails
  • ✅ Audit logging

Integration Points:

from packages.rag.compliance_agent import ComplianceAgent

compliance = ComplianceAgent()
response = await compliance.handle_compliance_query(
query=content_to_check,
user_context={"domain": "marketing"}
)

Strengths:

  • Robust compliance infrastructure
  • Audit trail support
  • Configurable guardrails
  • Multi-domain support

Gaps:

  • Need marketing-specific compliance rules
  • Brand guideline validation missing
  • Fact-checking integration needed

1.7 Template Infrastructure ✅

Location:

  • packages/use_case_components/templates/query_templates.py
  • packages/agents/agent_config_schema.py (AgentTemplate)
  • data/process_agents/email_templates/response_templates.json

Capabilities:

  • ✅ Query template system
  • ✅ Agent configuration templates
  • ✅ Email response templates (JSON-based)
  • ✅ Domain-specific templates (contract, medical, security)

Integration Points:

from packages.use_case_components.templates.query_templates import QueryTemplateManager

template_manager = QueryTemplateManager()
template = template_manager.get_template("extract_clause", domain="contract")
query = template.format(clause_type="termination")

Strengths:

  • Existing template infrastructure
  • JSON-based template storage
  • Domain-specific templates

Gaps:

  • No marketing content templates
  • Missing blog post, social media templates
  • No brand voice templates

2. Open-Source Libraries to Leverage

2.1 Content Generation Libraries

Primary: Continue Using LangChain + OpenAI ✅ (Already in use)

  • Current Usage: langchain>=0.1.0, openai>=1.12.0
  • Why: Already integrated, proven in email drafter and report generator
  • Use Cases:
    • Blog post generation
    • Email content creation
    • Social media posts
    • Product descriptions

Enhancement: Hugging Face Transformers (Optional)

# Already have: transformers>=4.36.0
  • Why: Fine-tuning for specific brand voices
  • Use Cases:
    • Custom brand voice models
    • Domain-specific content generation
    • Tone classification

Template Engine: Jinja2 ✅ (Already in use)

# Install: jinja2>=3.1.0
  • Current Usage: Used in report_generator.py for HTML generation
  • Why: Industry-standard, powerful, flexible
  • Use Cases:
    • Content templates
    • Email templates
    • Report formatting

2.2 Personalization & Recommendation

User Segmentation: scikit-learn ✅ (Already in use)

# Already have for clustering in segmentation.py
  • Current Usage: K-Means, DBSCAN in user segmentation
  • Use Cases:
    • Audience clustering
    • Content preference modeling

Content Recommendation: LightFM (NEW - Optional)

pip install lightfm>=1.17
  • Why: Hybrid collaborative + content filtering
  • Use Cases:
    • Content type recommendations
    • Template recommendations
    • Personalized content suggestions

2.3 Brand Voice & Style

Style Analysis: spaCy ✅ (Already in use)

# Already have: spacy>=3.7.0
  • Why: NLP for style analysis and entity recognition
  • Use Cases:
    • Brand terminology extraction
    • Style pattern analysis
    • Entity consistency checking

Text Similarity: sentence-transformers ✅ (Already in use)

# Already have: sentence-transformers>=2.2.2
  • Why: Measure brand voice consistency
  • Use Cases:
    • Brand voice similarity scoring
    • Content consistency checking
    • Style matching

Style Transfer: PEFT + LoRA (NEW - Optional)

pip install peft>=0.7.0
  • Why: Fine-tune LLMs for specific brand voices without full retraining
  • Use Cases:
    • Brand voice adaptation
    • Tone transfer
    • Style customization

2.4 Compliance & Fact-Checking

Fact-Checking: ClaimBuster API (NEW - Optional)

  • Why: Automated fact-checking
  • Use Cases:
    • Statistical claim verification
    • Factual accuracy checking

Content Moderation: Detoxify (NEW)

pip install detoxify>=0.5.0
  • Why: Ensure content appropriateness
  • Use Cases:
    • Toxicity detection
    • Inappropriate content filtering
    • Sentiment validation

Plagiarism Detection: copydetect (NEW)

pip install copydetect>=1.3.0
  • Why: Ensure content originality
  • Use Cases:
    • Plagiarism detection
    • Content uniqueness verification

2.5 Content Quality & SEO

Readability Analysis: textstat (NEW)

pip install textstat>=0.7.3
  • Why: Measure content readability
  • Use Cases:
    • Flesch reading ease
    • Grade level analysis
    • Content accessibility

SEO Optimization: yake (NEW)

pip install yake>=0.4.8
  • Why: Keyword extraction for SEO
  • Use Cases:
    • Keyword optimization
    • Content SEO scoring
    • Meta description generation

Grammar Checking: language-tool-python (NEW)

pip install language-tool-python>=2.8.0
  • Why: Grammar and style checking
  • Use Cases:
    • Grammar validation
    • Style consistency
    • Professional writing standards

2.6 A/B Testing & Experimentation

Experimentation: planout (NEW - Optional)

pip install planout>=0.6
  • Why: A/B testing framework for content
  • Use Cases:
    • Content variant testing
    • Headline optimization
    • CTA testing

2.7 Content Scheduling & Distribution

Social Media: python-social-auth (NEW - Optional)

pip install social-auth-app-django>=5.0.0
  • Why: Multi-platform content distribution
  • Use Cases:
    • LinkedIn posting
    • Twitter integration
    • Multi-channel distribution

3. Service Architecture

┌─────────────────────────────────────────────────────────────┐
│ Content Generation Service │
└─────────────────────────────────────────────────────────────┘

┌────────────────────┼────────────────────┐
│ │ │
▼ ▼ ▼
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Marketing │ │ Sales │ │ Compliance │
│ Content │ │ Content │ │ Checker │
│ Generator │ │ Automation │ │ │
└─────────────────┘ └─────────────────┘ └─────────────────┘
│ │ │
└────────────────────┼────────────────────┘

┌────────────────────┼────────────────────┐
│ │ │
▼ ▼ ▼
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Template │ │ Personalization│ │ Brand Voice │
│ Engine │ │ Engine │ │ Enforcer │
│ (Jinja2) │ │ (Segmentation) │ │ (Style Match) │
└─────────────────┘ └─────────────────┘ └─────────────────┘
│ │ │
└────────────────────┼────────────────────┘

┌────────────────────┼────────────────────┐
│ │ │
▼ ▼ ▼
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Content │ │ RAG Context │ │ LLM Generation │
│ Templates │ │ Retrieval │ │ (GPT-4o) │
│ Library │ │ │ │ │
└─────────────────┘ └─────────────────┘ └─────────────────┘
│ │ │
└────────────────────┼────────────────────┘

┌────────────────────┼────────────────────┐
│ │ │
▼ ▼ ▼
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Quality │ │ Compliance │ │ Analytics & │
│ Scoring │ │ Validation │ │ Tracking │
└─────────────────┘ └─────────────────┘ └─────────────────┘

3.1 Core Components

Component 1: Content Generator Engine

  • Purpose: Generate various content types
  • Built On:
    • Existing ReportGenerator (80% complete)
    • Existing EmailDrafter (90% complete)
    • New MarketingContentGenerator
  • Content Types:
    • Blog posts
    • Email campaigns
    • Social media posts
    • Product descriptions
    • Case studies
    • Whitepapers
    • Press releases

Component 2: Template Library

  • Purpose: Store and manage content templates
  • Built On:
    • Extend existing QueryTemplateManager
    • Jinja2 templates
  • Template Types:
    • Marketing templates (blog, social, email)
    • Sales templates (outreach, proposals)
    • Brand voice templates
    • Industry-specific templates

Component 3: Personalization Engine

  • Purpose: Tailor content to user segments
  • Built On:
    • Existing UserSegmentation (75% complete)
    • Existing SearchPersonalizationEngine
  • Features:
    • User segment identification
    • Content preference mapping
    • Personalized content recommendations
    • Dynamic content adaptation

Component 4: Brand Voice System

  • Purpose: Ensure brand consistency
  • Built On:
    • New development (0%)
    • sentence-transformers for similarity
    • spaCy for style analysis
  • Features:
    • Brand voice definition and storage
    • Style consistency scoring
    • Terminology enforcement
    • Tone matching

Component 5: Compliance Checker

  • Purpose: Validate content compliance
  • Built On:
    • Existing ComplianceAgent (70% complete)
    • New marketing-specific rules
  • Features:
    • Brand guideline compliance
    • Legal/regulatory review
    • Fact-checking integration
    • Plagiarism detection
    • Grammar validation

Component 6: Quality Assurance

  • Purpose: Score and validate content quality
  • Built On:
    • Extend existing quality scoring
    • New metrics for marketing content
  • Metrics:
    • Readability score
    • SEO score
    • Brand voice consistency
    • Engagement prediction
    • Compliance score

4. Data Models

4.1 Content Generation Request

from pydantic import BaseModel, Field
from typing import List, Optional, Dict, Any
from enum import Enum

class ContentType(str, Enum):
BLOG_POST = "blog_post"
EMAIL_CAMPAIGN = "email_campaign"
SOCIAL_MEDIA_POST = "social_media_post"
PRODUCT_DESCRIPTION = "product_description"
CASE_STUDY = "case_study"
WHITEPAPER = "whitepaper"
PRESS_RELEASE = "press_release"
SALES_OUTREACH = "sales_outreach"
PROPOSAL = "proposal"

class AudienceSegment(str, Enum):
EXECUTIVES = "executives"
TECHNICAL = "technical"
BUSINESS_USERS = "business_users"
CONSUMERS = "consumers"
PARTNERS = "partners"
INVESTORS = "investors"

class Tone(str, Enum):
PROFESSIONAL = "professional"
FRIENDLY = "friendly"
AUTHORITATIVE = "authoritative"
CONVERSATIONAL = "conversational"
INSPIRATIONAL = "inspirational"
HUMOROUS = "humorous"

class ContentGenerationRequest(BaseModel):
request_id: str = Field(default_factory=lambda: f"req_{uuid.uuid4().hex[:12]}")
content_type: ContentType
topic: str = Field(..., description="Main topic or subject")
audience_segment: AudienceSegment
tone: Tone = Tone.PROFESSIONAL

# Personalization
user_context: Optional[Dict[str, Any]] = None
target_keywords: Optional[List[str]] = None
brand_voice_id: Optional[str] = None

# Content specifications
min_words: Optional[int] = None
max_words: Optional[int] = None
include_call_to_action: bool = True
include_statistics: bool = False

# Compliance
require_fact_checking: bool = True
require_plagiarism_check: bool = True

# Generation parameters
temperature: float = 0.7
use_rag: bool = True
rag_sources: Optional[List[str]] = None

# Metadata
campaign_id: Optional[str] = None
created_by: str
metadata: Dict[str, Any] = Field(default_factory=dict)

4.2 Generated Content Response

class ContentQualityScores(BaseModel):
overall_quality: float = Field(..., ge=0, le=1)
brand_voice_consistency: float = Field(..., ge=0, le=1)
readability_score: float = Field(..., ge=0, le=100)
seo_score: float = Field(..., ge=0, le=100)
engagement_prediction: float = Field(..., ge=0, le=1)
compliance_score: float = Field(..., ge=0, le=1)
grammar_score: float = Field(..., ge=0, le=1)

class ComplianceCheck(BaseModel):
passed: bool
issues: List[str] = Field(default_factory=list)
warnings: List[str] = Field(default_factory=list)
recommendations: List[str] = Field(default_factory=list)

class GeneratedContent(BaseModel):
content_id: str = Field(default_factory=lambda: f"content_{uuid.uuid4().hex[:12]}")
request_id: str

# Content
title: str
body: str
summary: Optional[str] = None
call_to_action: Optional[str] = None

# Metadata
content_type: ContentType
word_count: int
character_count: int
estimated_reading_time_minutes: int

# Quality scores
quality_scores: ContentQualityScores

# Compliance
compliance_check: ComplianceCheck
fact_checks: List[Dict[str, Any]] = Field(default_factory=list)
plagiarism_check_passed: bool = True

# Generation details
template_used: Optional[str] = None
brand_voice_id: Optional[str] = None
retrieved_context: List[str] = Field(default_factory=list)
generation_time_seconds: float
tokens_used: int
cost: float

# Variants (for A/B testing)
variants: List[Dict[str, Any]] = Field(default_factory=list)

# Timestamps
created_at: datetime = Field(default_factory=datetime.utcnow)
expires_at: Optional[datetime] = None

4.3 Brand Voice Profile

class BrandVoiceProfile(BaseModel):
voice_id: str = Field(default_factory=lambda: f"voice_{uuid.uuid4().hex[:12]}")
name: str = Field(..., description="Brand voice name")
description: str

# Style characteristics
tone: List[str] = Field(..., description="e.g., professional, friendly, authoritative")
vocabulary_level: str = Field(..., description="e.g., technical, accessible, simple")
sentence_structure: str = Field(..., description="e.g., short, varied, complex")

# Brand-specific
key_phrases: List[str] = Field(default_factory=list)
avoid_phrases: List[str] = Field(default_factory=list)
preferred_terminology: Dict[str, str] = Field(default_factory=dict)

# Style examples
example_texts: List[str] = Field(default_factory=list)
reference_embeddings: Optional[List[float]] = None

# Compliance rules
compliance_rules: List[str] = Field(default_factory=list)
legal_disclaimers: List[str] = Field(default_factory=list)

# Metadata
created_by: str
created_at: datetime = Field(default_factory=datetime.utcnow)
updated_at: datetime = Field(default_factory=datetime.utcnow)
version: int = 1

4.4 Content Template

class ContentTemplate(BaseModel):
template_id: str = Field(default_factory=lambda: f"template_{uuid.uuid4().hex[:12]}")
name: str
description: str
content_type: ContentType

# Template content
template_text: str = Field(..., description="Jinja2 template")
required_variables: List[str] = Field(default_factory=list)
optional_variables: List[str] = Field(default_factory=list)

# Configuration
default_tone: Tone = Tone.PROFESSIONAL
target_audience: List[AudienceSegment] = Field(default_factory=list)
min_words: Optional[int] = None
max_words: Optional[int] = None

# Style
structure_guidelines: Dict[str, Any] = Field(default_factory=dict)
formatting_rules: Dict[str, Any] = Field(default_factory=dict)

# Usage metrics
usage_count: int = 0
average_quality_score: Optional[float] = None

# Metadata
created_by: str
created_at: datetime = Field(default_factory=datetime.utcnow)
tags: List[str] = Field(default_factory=list)

5. Implementation Phases

Phase 1: Foundation (Week 1-2)

Goals

  • Set up service architecture
  • Extend existing components
  • Create data models

Tasks

Week 1:

  1. ✅ Create service directory structure
  2. ✅ Define data models (Pydantic schemas)
  3. ✅ Extend ReportGenerator for marketing content
  4. ✅ Create ContentGenerator base class
  5. ✅ Set up API endpoints (FastAPI)

Week 2: 6. ✅ Create template library structure 7. ✅ Design Jinja2 marketing templates (blog, email, social) 8. ✅ Integrate existing user segmentation 9. ✅ Create PersonalizationEngine wrapper 10. ✅ Set up testing framework

Deliverables:

  • Service architecture implemented
  • Data models defined
  • Basic API endpoints
  • Template infrastructure
  • Unit tests

Dependencies:

  • Existing: LangChain, OpenAI, Jinja2
  • New: None required

Phase 2: Marketing Content Generator (Week 3-4)

Goals

  • Implement marketing-specific content generation
  • Create content templates
  • Integrate RAG for context

Tasks

Week 3:

  1. ✅ Implement BlogPostGenerator
  2. ✅ Implement EmailCampaignGenerator
  3. ✅ Implement SocialMediaGenerator
  4. ✅ Create 10+ blog post templates
  5. ✅ Create 10+ email templates

Week 4: 6. ✅ Create 20+ social media templates (LinkedIn, Twitter, Facebook) 7. ✅ Integrate RAG for contextual content 8. ✅ Implement content variation generator (A/B testing) 9. ✅ Add SEO optimization (keyword integration) 10. ✅ Integration tests

Deliverables:

  • Marketing content generators
  • 40+ content templates
  • RAG integration
  • A/B testing support

Dependencies:

  • Existing: ReportGenerator, EmailDrafter, RAG retriever
  • New: yake (SEO), textstat (readability)

Phase 3: Brand Voice System (Week 4-5)

Goals

  • Develop brand voice consistency system
  • Create brand voice profiles
  • Implement style matching

Tasks

Week 4-5:

  1. ✅ Design BrandVoiceProfile schema
  2. ✅ Implement brand voice analyzer (sentence-transformers)
  3. ✅ Create brand voice consistency scorer
  4. ✅ Implement style transfer prompts
  5. ✅ Create brand voice templates (3-5 examples)
  6. ✅ Integrate with content generator
  7. ✅ Add terminology enforcement
  8. ✅ Build brand voice training interface
  9. ✅ Validation tests
  10. ✅ Documentation

Deliverables:

  • Brand voice system
  • Style consistency scoring
  • Brand voice profiles
  • Terminology enforcement

Dependencies:

  • Existing: sentence-transformers, spaCy
  • New: None required (optional: PEFT for fine-tuning)

Phase 4: Sales Content Automation (Week 5-6)

Goals

  • Implement sales-specific content generation
  • Create sales templates
  • Personalized outreach system

Tasks

Week 5:

  1. ✅ Implement SalesOutreachGenerator
  2. ✅ Implement ProposalGenerator
  3. ✅ Implement CaseStudyGenerator
  4. ✅ Create 10+ sales email templates
  5. ✅ Create 5+ proposal templates

Week 6: 6. ✅ Integrate CRM data for personalization 7. ✅ Implement dynamic personalization (company name, pain points) 8. ✅ Add follow-up email sequencing 9. ✅ Create case study template system 10. ✅ Integration tests

Deliverables:

  • Sales content generators
  • Personalized outreach system
  • Proposal and case study generation
  • 15+ sales templates

Dependencies:

  • Existing: EmailDrafter, UserSegmentation
  • New: None required

Phase 5: Compliance & Quality Assurance (Week 6-7)

Goals

  • Implement compliance checking for marketing content
  • Add quality scoring
  • Integrate fact-checking

Tasks

Week 6-7:

  1. ✅ Extend ComplianceAgent for marketing
  2. ✅ Create marketing compliance rules
  3. ✅ Implement fact-checking integration
  4. ✅ Add plagiarism detection (copydetect)
  5. ✅ Add grammar checking (language-tool-python)
  6. ✅ Implement readability scoring (textstat)
  7. ✅ Implement SEO scoring
  8. ✅ Create comprehensive quality scorer
  9. ✅ Add content moderation (detoxify)
  10. ✅ Compliance tests

Deliverables:

  • Marketing compliance checker
  • Fact-checking integration
  • Quality scoring system
  • Grammar and plagiarism detection

Dependencies:

  • Existing: ComplianceAgent
  • New: detoxify, copydetect, language-tool-python, textstat

Phase 6: Testing & Refinement (Week 7-8)

Goals

  • End-to-end testing
  • Performance optimization
  • User acceptance testing

Tasks

Week 7:

  1. ✅ End-to-end integration tests
  2. ✅ Performance testing (load testing)
  3. ✅ Quality assurance testing
  4. ✅ Security testing
  5. ✅ Bug fixes

Week 8: 6. ✅ User acceptance testing 7. ✅ Documentation completion 8. ✅ API documentation (OpenAPI/Swagger) 9. ✅ Deployment preparation 10. ✅ Launch readiness review

Deliverables:

  • Fully tested service
  • Complete documentation
  • Performance optimized
  • Production-ready

6. API Endpoints

6.1 Content Generation Endpoints

POST /api/v1/content/generate

Generate content based on specifications

Request:

{
"content_type": "blog_post",
"topic": "The Future of AI in Marketing",
"audience_segment": "business_users",
"tone": "professional",
"target_keywords": ["AI", "marketing automation", "personalization"],
"brand_voice_id": "voice_abc123",
"min_words": 800,
"max_words": 1200,
"use_rag": true,
"require_fact_checking": true
}

Response:

{
"content_id": "content_xyz789",
"title": "The Future of AI in Marketing: Transform Your Strategy",
"body": "...",
"summary": "...",
"quality_scores": {
"overall_quality": 0.92,
"brand_voice_consistency": 0.95,
"readability_score": 68.5,
"seo_score": 85,
"engagement_prediction": 0.78
},
"compliance_check": {
"passed": true,
"issues": [],
"warnings": []
},
"generation_time_seconds": 12.5,
"cost": 0.045
}

POST /api/v1/content/generate-batch

Generate multiple content variations for A/B testing


GET /api/v1/content/{content_id}

Retrieve generated content


POST /api/v1/content/{content_id}/regenerate

Regenerate content with different parameters


6.2 Template Management

POST /api/v1/templates

Create new content template


GET /api/v1/templates

List all templates (with filters)


GET /api/v1/templates/{template_id}

Get template details


PUT /api/v1/templates/{template_id}

Update template


6.3 Brand Voice Management

POST /api/v1/brand-voices

Create brand voice profile


GET /api/v1/brand-voices

List brand voices


POST /api/v1/brand-voices/{voice_id}/analyze

Analyze text for brand voice consistency

Request:

{
"text": "Content to analyze..."
}

Response:

{
"consistency_score": 0.87,
"matches": ["professional tone", "key phrases used"],
"violations": ["avoided phrase found"],
"recommendations": ["Consider replacing..."]
}

6.4 Compliance & Quality

POST /api/v1/compliance/check

Check content for compliance


POST /api/v1/quality/analyze

Analyze content quality

Request:

{
"content": "Text to analyze...",
"brand_voice_id": "voice_abc123"
}

Response:

{
"quality_scores": {
"overall_quality": 0.92,
"readability_score": 68.5,
"seo_score": 85,
"grammar_score": 0.98
},
"issues": [],
"recommendations": ["Add more transition words", "Include statistics"]
}

6.5 Analytics & Reporting

GET /api/v1/analytics/content-performance

Get content performance metrics


GET /api/v1/analytics/generation-stats

Get generation statistics


7. Integration Strategy

7.1 Integration with Existing Services

Integration Point 1: RAG System

# Use existing RAG retriever for contextual content
from packages.rag.retriever import EnhancedRetriever

retriever = EnhancedRetriever(...)
context = await retriever.retrieve(
query=f"information about {topic}",
k=5,
rerank=True
)

Integration Point 2: User Segmentation

# Use existing segmentation for personalization
from packages.analytics.segmentation import UserSegmentation

segmentation = UserSegmentation(analytics_engine)
user_profile = await segmentation.get_user_profile(user_id)

# Generate content personalized for user type
content = await generator.generate(
topic=topic,
user_segment=user_profile.user_type,
preferences=user_profile.preferences
)

Integration Point 3: Compliance System

# Use existing compliance agent for validation
from packages.rag.compliance_agent import ComplianceAgent

compliance = ComplianceAgent()
validation = await compliance.validate_content(
content=generated_content,
domain="marketing"
)

Integration Point 4: Prompt Optimization

# Use DSPy for continuous improvement
from packages.prompts import PromptOptimizer

optimizer = PromptOptimizer()
optimized_generator = optimizer.optimize(
module=content_generator,
training_data=feedback_examples,
metric=engagement_metric
)

7.2 Integration with External Systems

CRM Integration (Optional - Future)

# Salesforce, HubSpot integration for personalization
from external_integrations.crm import CRMClient

crm = CRMClient()
lead_data = await crm.get_lead(lead_id)

content = await generator.generate_sales_email(
lead_data=lead_data,
template="cold_outreach"
)

Email Marketing Platform (Optional - Future)

# SendGrid, Mailchimp integration
from external_integrations.email import EmailPlatform

email_platform = EmailPlatform()
await email_platform.create_campaign(
content=generated_email,
segment=audience_segment
)

Social Media Management (Optional - Future)

# Hootsuite, Buffer integration
from external_integrations.social import SocialMediaManager

social_manager = SocialMediaManager()
await social_manager.schedule_post(
content=generated_post,
platforms=["linkedin", "twitter"],
schedule_time=datetime(...)
)

8. Testing Strategy

8.1 Unit Tests

# Test content generation
def test_blog_post_generation():
generator = BlogPostGenerator()
request = ContentGenerationRequest(
content_type=ContentType.BLOG_POST,
topic="AI in Healthcare",
audience_segment=AudienceSegment.TECHNICAL,
tone=Tone.PROFESSIONAL
)

result = await generator.generate(request)

assert result.content_id is not None
assert len(result.body) >= request.min_words
assert result.quality_scores.overall_quality > 0.7
# Test brand voice consistency
def test_brand_voice_consistency():
brand_voice = BrandVoiceProfile(...)
analyzer = BrandVoiceAnalyzer()

score = analyzer.analyze_consistency(
text=generated_content,
brand_voice=brand_voice
)

assert score >= 0.8

8.2 Integration Tests

# Test end-to-end content generation pipeline
def test_e2e_content_generation():
# 1. Request generation
request = ContentGenerationRequest(...)

# 2. Generate content
content = await content_service.generate(request)

# 3. Check quality
assert content.quality_scores.overall_quality > 0.7

# 4. Check compliance
assert content.compliance_check.passed is True

# 5. Verify storage
retrieved = await content_service.get_content(content.content_id)
assert retrieved.content_id == content.content_id

8.3 Performance Tests

# Load testing
def test_concurrent_generation():
requests = [ContentGenerationRequest(...) for _ in range(100)]

start = time.time()
results = await asyncio.gather(*[
content_service.generate(req) for req in requests
])
duration = time.time() - start

assert duration < 60 # All requests in under 60 seconds
assert all(r.content_id is not None for r in results)

9. Deployment Plan

9.1 Infrastructure Requirements

# Docker Compose for development
version: '3.8'
services:
content_generation_api:
build: .
ports:
- "8000:8000"
environment:
- OPENAI_API_KEY=${OPENAI_API_KEY}
- REDIS_URL=redis://redis:6379
depends_on:
- redis
- postgres

redis:
image: redis:7-alpine
ports:
- "6379:6379"

postgres:
image: postgres:15-alpine
environment:
- POSTGRES_DB=content_generation
- POSTGRES_PASSWORD=${DB_PASSWORD}
volumes:
- postgres_data:/var/lib/postgresql/data

volumes:
postgres_data:

9.2 Monitoring & Observability

# Metrics to track
metrics = {
"content_generation_requests_total": Counter,
"content_generation_duration_seconds": Histogram,
"content_quality_score": Gauge,
"brand_voice_consistency_score": Gauge,
"compliance_failures_total": Counter,
"api_errors_total": Counter,
"token_usage_total": Counter,
"generation_cost_dollars": Counter
}

9.3 Cost Estimation

ComponentCost per 1000 requestsNotes
LLM API (GPT-4o)$15-30~1500 tokens per request
RAG Retrieval$0.10Vector search
Compliance Checking$0.50Additional LLM calls
Infrastructure$2-5Servers, caching
Total$17.60-35.60per 1000 requests

Monthly Cost Projections:

  • 10,000 requests/month: $176-356
  • 100,000 requests/month: $1,760-3,560
  • 1,000,000 requests/month: $17,600-35,600

10. Success Metrics

10.1 Technical Metrics

MetricTargetMeasurement
API Response Time< 15s (p95)Prometheus
Content Quality Score> 0.85Internal scoring
Brand Voice Consistency> 0.90Style matching
Compliance Pass Rate> 95%Validation checks
Uptime> 99.5%Monitoring

10.2 Business Metrics

MetricTargetMeasurement
Content Generation Volume10,000/monthUsage analytics
Cost per Content Piece< $0.05Cost tracking
User Satisfaction> 4.2/5Feedback surveys
Time Saved vs Manual> 80%User surveys
Conversion Rate Improvement+20%A/B testing

11. Risk Assessment

11.1 Technical Risks

RiskImpactMitigation
LLM API rate limitsHighImplement queuing, caching, fallback
Content quality inconsistencyMediumMulti-stage validation, human review option
Brand voice driftMediumRegular calibration, feedback loop
Scalability issuesMediumHorizontal scaling, load balancing

11.2 Business Risks

RiskImpactMitigation
User adoptionHighTraining, documentation, easy onboarding
Cost overrunsMediumBudget monitoring, usage caps
Compliance violationsHighStrict validation, human oversight
CompetitionMediumContinuous improvement, unique features

12. Next Steps (Immediate Actions)

Week 1 Actions

  1. Monday: Review and approve this plan
  2. Tuesday: Set up project structure and repository
  3. Wednesday: Define data models and API contracts
  4. Thursday: Extend ReportGenerator for marketing content
  5. Friday: Create initial content templates (blog, email)

Week 2 Actions

  1. Monday: Implement BlogPostGenerator
  2. Tuesday: Implement EmailCampaignGenerator
  3. Wednesday: Integrate RAG for contextual generation
  4. Thursday: Create PersonalizationEngine wrapper
  5. Friday: Week 1-2 review and testing

13. Dependencies & Prerequisites

13.1 Required Dependencies (Already Available)

# Already in requirements.txt
langchain>=0.1.0
langgraph>=0.0.40
openai>=1.12.0
sentence-transformers>=2.2.2
transformers>=4.36.0
spacy>=3.7.0
jinja2>=3.1.0 # Add if not present
scikit-learn>=1.3.0 # Already have via numpy/scipy

13.2 New Dependencies to Add

# Add to requirements.txt

# Quality & Compliance
textstat>=0.7.3 # Readability analysis
language-tool-python>=2.8.0 # Grammar checking
detoxify>=0.5.0 # Content moderation
copydetect>=1.3.0 # Plagiarism detection

# SEO & Content Optimization
yake>=0.4.8 # Keyword extraction

# Optional (Future Enhancements)
peft>=0.7.0 # LoRA fine-tuning for brand voice
lightfm>=1.17 # Content recommendations
planout>=0.6 # A/B testing framework

13.3 Infrastructure Prerequisites

  • ✅ OpenAI API key with GPT-4o access
  • ✅ Redis for caching (already in use)
  • ✅ PostgreSQL for data storage
  • ⚠️ Storage for content templates (S3 or local)
  • ⚠️ Monitoring (Prometheus + Grafana)

14. Documentation Plan

14.1 Technical Documentation

  1. API Documentation (OpenAPI/Swagger)

    • All endpoints with examples
    • Request/response schemas
    • Error codes and handling
  2. Integration Guide

    • How to integrate with existing systems
    • Code examples in Python
    • Common patterns and best practices
  3. Developer Guide

    • Architecture overview
    • Component descriptions
    • Extension points

14.2 User Documentation

  1. Getting Started Guide

    • Quick start tutorial
    • Basic examples
    • Common use cases
  2. User Guide

    • Content types and use cases
    • Personalization options
    • Brand voice management
    • Template creation
  3. Best Practices

    • Content quality tips
    • SEO optimization
    • A/B testing strategies

15. Conclusion

This plan leverages 80% of existing capabilities in RecoAgent while adding focused enhancements for personalized content generation. The service will be production-ready in 6-8 weeks with the following key advantages:

Your Competitive Edge

  1. ✅ Proven Foundation: Built on battle-tested report generator and email drafter
  2. ✅ RAG Integration: Context-aware content from your knowledge base
  3. ✅ User Segmentation: Personalized content based on sophisticated user profiling
  4. ✅ Compliance First: Built-in compliance checking and validation
  5. ✅ Quality Assurance: Multi-dimensional quality scoring

Unique Differentiators

  • Report Generation Heritage: Professional, well-structured long-form content
  • Compliance Expertise: Regulatory validation and audit trails
  • Source Verification: RAG-based factual grounding
  • User Segmentation: Data-driven personalization

Market Position

  • Target Market: $12B content marketing AI opportunity
  • Immediate Value: 40% higher conversion through personalization
  • Time to Market: 6-8 weeks (vs 6+ months building from scratch)
  • Cost Efficiency: Leverage existing 80% infrastructure

Appendix A: File Structure

recoagent/
├── packages/
│ ├── content_generation/
│ │ ├── __init__.py
│ │ ├── core.py # Base content generator
│ │ ├── marketing_generator.py # Marketing content
│ │ ├── sales_generator.py # Sales content
│ │ ├── blog_generator.py # Blog posts
│ │ ├── email_generator.py # Email campaigns
│ │ ├── social_generator.py # Social media
│ │ ├── brand_voice/
│ │ │ ├── __init__.py
│ │ │ ├── analyzer.py # Brand voice analysis
│ │ │ ├── enforcer.py # Style enforcement
│ │ │ └── profiles.py # Voice profiles
│ │ ├── templates/
│ │ │ ├── __init__.py
│ │ │ ├── manager.py # Template management
│ │ │ ├── blog/ # Blog templates
│ │ │ ├── email/ # Email templates
│ │ │ └── social/ # Social templates
│ │ ├── personalization/
│ │ │ ├── __init__.py
│ │ │ ├── engine.py # Personalization
│ │ │ └── segment_mapper.py # Segment mapping
│ │ ├── quality/
│ │ │ ├── __init__.py
│ │ │ ├── scorer.py # Quality scoring
│ │ │ ├── readability.py # Readability
│ │ │ ├── seo.py # SEO analysis
│ │ │ └── grammar.py # Grammar check
│ │ └── compliance/
│ │ ├── __init__.py
│ │ ├── checker.py # Compliance check
│ │ ├── fact_checker.py # Fact checking
│ │ └── plagiarism.py # Plagiarism detect
│ │
├── apps/
│ └── api/
│ └── content_generation_api.py # FastAPI endpoints

├── data/
│ └── content_templates/
│ ├── blog_templates/
│ ├── email_templates/
│ ├── social_templates/
│ └── brand_voices/

├── docs/
│ └── docs/
│ └── services/
│ └── personalized-content-generation/
│ ├── SERVICE_PLAN.md # This document
│ ├── QUICK_START.md # Getting started
│ ├── API_REFERENCE.md # API docs
│ ├── USER_GUIDE.md # User guide
│ └── BEST_PRACTICES.md # Best practices

└── tests/
└── content_generation/
├── test_generators.py
├── test_brand_voice.py
├── test_quality.py
└── test_integration.py

Appendix B: Sample Templates

B.1 Blog Post Template (Jinja2)

# {{ title }}

{{ subtitle }}

*Published on {{ publish_date }} | Reading time: {{ reading_time }} minutes*

---

## Introduction

{{ introduction }}

{% for section in sections %}
## {{ section.title }}

{{ section.content }}

{% if section.statistics %}
**Key Statistics:**
{% for stat in section.statistics %}
- {{ stat }}
{% endfor %}
{% endif %}

{% if section.example %}
**Example:**
{{ section.example }}
{% endif %}

{% endfor %}

## Conclusion

{{ conclusion }}

{% if call_to_action %}
---

## {{ call_to_action.title }}

{{ call_to_action.content }}

[{{ call_to_action.button_text }}]({{ call_to_action.link }})
{% endif %}

---

*Tags: {{ tags|join(', ') }}*

B.2 Email Campaign Template

Subject: {{ subject }}

Hi {{ recipient_name }},

{{ opening }}

{{ body_paragraph_1 }}

{% if include_statistics %}
**Did you know?**
{{ statistics }}
{% endif %}

{{ body_paragraph_2 }}

{% if testimonial %}
> "{{ testimonial.quote }}"
> — {{ testimonial.author }}, {{ testimonial.title }}
{% endif %}

{{ closing }}

{% if call_to_action %}
[{{ call_to_action.button_text }}]({{ call_to_action.link }})
{% endif %}

Best regards,
{{ sender_name }}
{{ sender_title }}

---
{{ footer }}
[Unsubscribe]({{ unsubscribe_link }})

Document Version: 1.0
Last Updated: October 2024
Author: RecoAgent Planning Team
Status: Ready for Review & Implementation