Personalized Content Generation Service - Comprehensive Plan
Executive Summary
This document outlines the comprehensive plan for developing a Personalized Content Generation Service that will enable automated creation of marketing content, sales materials, and compliance-checked content. The service leverages existing capabilities and open-source libraries to deliver a production-ready solution within 6-8 weeks.
Market Opportunity
- Market Size: Content marketing AI projected at $12B by 2028
- Business Impact: Personalization drives 40% higher conversion rates
- Target Users: Marketing teams, sales organizations, content creators
Current Readiness Assessment
- ✅ Report Generator: 80% (well-structured, multi-format support)
- ✅ Content Formatting: 85% (structured responses, templates)
- ✅ User Segmentation: 75% (comprehensive analytics)
- ⚠️ Content Templates: Need Development (1-2 weeks)
- ⚠️ Brand Voice System: Need Development (2-3 weeks)
1. What We Already Have
1.1 Report Generation Capabilities ✅
Location:
packages/agents/process_agents/report_generator.py
packages/analytics/reporting.py
packages/use_case_components/generators/report_generator.py
Capabilities:
- ✅ Multi-format output (Markdown, HTML, PDF, JSON, DOCX)
- ✅ Executive summary generation
- ✅ Structured sections with citations
- ✅ Quality scoring system
- ✅ Template-based generation
- ✅ LLM-powered synthesis
Integration Points:
# Research Report Generator
from packages.agents.process_agents.report_generator import ReportGenerator
generator = ReportGenerator()
report = await generator.generate_report(
plan=research_plan,
findings=findings,
output_format=ReportFormat.MARKDOWN
)
Strengths:
- Proven report generation with citations
- Multi-format export (PDF, DOCX, HTML, Markdown)
- Quality scoring built-in
- LLM-based synthesis
Gaps:
- Not optimized for marketing content
- Limited personalization by user segment
- No brand voice consistency enforcement
1.2 Content Formatting & Structuring ✅
Location:
packages/rag/structured_formatting.py
packages/rag/response_visualization.py
Capabilities:
- ✅ Response type detection (summary, guide, comparison, etc.)
- ✅ Content parsing into structured sections
- ✅ Table of contents generation
- ✅ Navigation structure
- ✅ Formatting configuration system
Integration Points:
from packages.rag.structured_formatting import StructuredFormatter, FormattingConfig
formatter = StructuredFormatter(config=FormattingConfig())
response = await formatter.format_response(
text=generated_content,
title="Marketing Blog Post"
)
Strengths:
- Sophisticated content structuring
- Multiple response types
- TOC and navigation generation
- Configurable formatting
Gaps:
- Not designed for marketing-specific formats
- Limited template system
1.3 User Segmentation & Personalization ✅
Location:
packages/analytics/segmentation.py
packages/search_interface/personalization.py
Capabilities:
- ✅ User profiling (power user, casual, researcher, etc.)
- ✅ Behavior clustering (K-Means, DBSCAN)
- ✅ Engagement level classification
- ✅ Preference tracking
- ✅ User journey analysis
Integration Points:
from packages.analytics.segmentation import UserSegmentation
segmentation = UserSegmentation(analytics_engine)
profiles = await segmentation.create_user_profiles(days=90)
# Use profiles for personalization
for profile in profiles:
print(f"User: {profile.user_id}, Type: {profile.user_type}")
Strengths:
- Comprehensive user classification
- Machine learning-based clustering
- Behavioral pattern analysis
- Preference learning
Gaps:
- Not integrated with content generation
- Missing content preference mapping
- No audience segment templates
1.4 Email Drafting System ✅
Location:
packages/agents/process_agents/email_drafter.py
Capabilities:
- ✅ Template-based email generation
- ✅ RAG-powered context retrieval
- ✅ Tone matching (professional, friendly, apologetic)
- ✅ Quality scoring (confidence, completeness, appropriateness)
- ✅ LLM personalization
Integration Points:
from packages.agents.process_agents.email_drafter import EmailDrafter
drafter = EmailDrafter(retriever=rag_retriever)
draft = await drafter.draft_response(
email=incoming_email,
classification=email_classification
)
Strengths:
- Proven email generation pipeline
- Template + RAG + LLM architecture
- Tone and quality scoring
- Context-aware generation
Gaps:
- Limited to email responses (not marketing emails)
- No multi-channel content support
- Missing A/B testing integration
1.5 Prompt Optimization ✅
Location:
packages/prompts/optimization.py
packages/prompts/dspy_modules.py
Capabilities:
- ✅ DSPy-based prompt optimization
- ✅ Bootstrap few-shot learning
- ✅ MIPRO optimization
- ✅ Metric-driven evaluation
Integration Points:
from packages.prompts import PromptOptimizer, OptimizationConfig
optimizer = PromptOptimizer(config=OptimizationConfig())
optimized_module = optimizer.optimize(
module=content_generator,
training_data=examples,
metric=quality_metric
)
Strengths:
- Automatic prompt optimization
- Data-driven improvement
- Evaluation framework
Gaps:
- Not specifically tuned for content generation
- Need marketing-specific metrics
1.6 Compliance & Validation ✅
Location:
packages/rag/compliance_agent.py
packages/rag/compliance_config.py
packages/rag/input_sanitization.py
config/guardrails.yml
Capabilities:
- ✅ Compliance checking pipeline
- ✅ Regulatory validation
- ✅ Input sanitization
- ✅ Safety guardrails
- ✅ Audit logging
Integration Points:
from packages.rag.compliance_agent import ComplianceAgent
compliance = ComplianceAgent()
response = await compliance.handle_compliance_query(
query=content_to_check,
user_context={"domain": "marketing"}
)
Strengths:
- Robust compliance infrastructure
- Audit trail support
- Configurable guardrails
- Multi-domain support
Gaps:
- Need marketing-specific compliance rules
- Brand guideline validation missing
- Fact-checking integration needed
1.7 Template Infrastructure ✅
Location:
packages/use_case_components/templates/query_templates.py
packages/agents/agent_config_schema.py
(AgentTemplate)data/process_agents/email_templates/response_templates.json
Capabilities:
- ✅ Query template system
- ✅ Agent configuration templates
- ✅ Email response templates (JSON-based)
- ✅ Domain-specific templates (contract, medical, security)
Integration Points:
from packages.use_case_components.templates.query_templates import QueryTemplateManager
template_manager = QueryTemplateManager()
template = template_manager.get_template("extract_clause", domain="contract")
query = template.format(clause_type="termination")
Strengths:
- Existing template infrastructure
- JSON-based template storage
- Domain-specific templates
Gaps:
- No marketing content templates
- Missing blog post, social media templates
- No brand voice templates
2. Open-Source Libraries to Leverage
2.1 Content Generation Libraries
Primary: Continue Using LangChain + OpenAI ✅ (Already in use)
- Current Usage:
langchain>=0.1.0
,openai>=1.12.0
- Why: Already integrated, proven in email drafter and report generator
- Use Cases:
- Blog post generation
- Email content creation
- Social media posts
- Product descriptions
Enhancement: Hugging Face Transformers (Optional)
# Already have: transformers>=4.36.0
- Why: Fine-tuning for specific brand voices
- Use Cases:
- Custom brand voice models
- Domain-specific content generation
- Tone classification
Template Engine: Jinja2 ✅ (Already in use)
# Install: jinja2>=3.1.0
- Current Usage: Used in
report_generator.py
for HTML generation - Why: Industry-standard, powerful, flexible
- Use Cases:
- Content templates
- Email templates
- Report formatting
2.2 Personalization & Recommendation
User Segmentation: scikit-learn ✅ (Already in use)
# Already have for clustering in segmentation.py
- Current Usage: K-Means, DBSCAN in user segmentation
- Use Cases:
- Audience clustering
- Content preference modeling
Content Recommendation: LightFM (NEW - Optional)
pip install lightfm>=1.17
- Why: Hybrid collaborative + content filtering
- Use Cases:
- Content type recommendations
- Template recommendations
- Personalized content suggestions
2.3 Brand Voice & Style
Style Analysis: spaCy ✅ (Already in use)
# Already have: spacy>=3.7.0
- Why: NLP for style analysis and entity recognition
- Use Cases:
- Brand terminology extraction
- Style pattern analysis
- Entity consistency checking
Text Similarity: sentence-transformers ✅ (Already in use)
# Already have: sentence-transformers>=2.2.2
- Why: Measure brand voice consistency
- Use Cases:
- Brand voice similarity scoring
- Content consistency checking
- Style matching
Style Transfer: PEFT + LoRA (NEW - Optional)
pip install peft>=0.7.0
- Why: Fine-tune LLMs for specific brand voices without full retraining
- Use Cases:
- Brand voice adaptation
- Tone transfer
- Style customization
2.4 Compliance & Fact-Checking
Fact-Checking: ClaimBuster API (NEW - Optional)
- Why: Automated fact-checking
- Use Cases:
- Statistical claim verification
- Factual accuracy checking
Content Moderation: Detoxify (NEW)
pip install detoxify>=0.5.0
- Why: Ensure content appropriateness
- Use Cases:
- Toxicity detection
- Inappropriate content filtering
- Sentiment validation
Plagiarism Detection: copydetect (NEW)
pip install copydetect>=1.3.0
- Why: Ensure content originality
- Use Cases:
- Plagiarism detection
- Content uniqueness verification
2.5 Content Quality & SEO
Readability Analysis: textstat (NEW)
pip install textstat>=0.7.3
- Why: Measure content readability
- Use Cases:
- Flesch reading ease
- Grade level analysis
- Content accessibility
SEO Optimization: yake (NEW)
pip install yake>=0.4.8
- Why: Keyword extraction for SEO
- Use Cases:
- Keyword optimization
- Content SEO scoring
- Meta description generation
Grammar Checking: language-tool-python (NEW)
pip install language-tool-python>=2.8.0
- Why: Grammar and style checking
- Use Cases:
- Grammar validation
- Style consistency
- Professional writing standards
2.6 A/B Testing & Experimentation
Experimentation: planout (NEW - Optional)
pip install planout>=0.6
- Why: A/B testing framework for content
- Use Cases:
- Content variant testing
- Headline optimization
- CTA testing
2.7 Content Scheduling & Distribution
Social Media: python-social-auth (NEW - Optional)
pip install social-auth-app-django>=5.0.0
- Why: Multi-platform content distribution
- Use Cases:
- LinkedIn posting
- Twitter integration
- Multi-channel distribution
3. Service Architecture
┌─────────────────────────────────────────────────────────────┐
│ Content Generation Service │
└─────────────────────────────────────────────────────────────┘
│
┌────────────────────┼────────────────────┐
│ │ │
▼ ▼ ▼
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Marketing │ │ Sales │ │ Compliance │
│ Content │ │ Content │ │ Checker │
│ Generator │ │ Automation │ │ │
└─────────────────┘ └─────────────────┘ └─────────────────┘
│ │ │
└────────────────────┼────────────────────┘
│
┌────────────────────┼────────────────────┐
│ │ │
▼ ▼ ▼
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Template │ │ Personalization│ │ Brand Voice │
│ Engine │ │ Engine │ │ Enforcer │
│ (Jinja2) │ │ (Segmentation) │ │ (Style Match) │
└─────────────────┘ └─────────────────┘ └─────────────────┘
│ │ │
└────────────────────┼────────────────────┘
│
┌────────────────────┼────────────────────┐
│ │ │
▼ ▼ ▼
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Content │ │ RAG Context │ │ LLM Generation │
│ Templates │ │ Retrieval │ │ (GPT-4o) │
│ Library │ │ │ │ │
└─────────────────┘ └─────────────────┘ └─────────────────┘
│ │ │
└────────────────────┼────────────────────┘
│
┌────────────────────┼────────────────────┐
│ │ │
▼ ▼ ▼
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Quality │ │ Compliance │ │ Analytics & │
│ Scoring │ │ Validation │ │ Tracking │
└─────────────────┘ └─────────────────┘ └─────────────────┘
3.1 Core Components
Component 1: Content Generator Engine
- Purpose: Generate various content types
- Built On:
- Existing
ReportGenerator
(80% complete) - Existing
EmailDrafter
(90% complete) - New
MarketingContentGenerator
- Existing
- Content Types:
- Blog posts
- Email campaigns
- Social media posts
- Product descriptions
- Case studies
- Whitepapers
- Press releases
Component 2: Template Library
- Purpose: Store and manage content templates
- Built On:
- Extend existing
QueryTemplateManager
- Jinja2 templates
- Extend existing
- Template Types:
- Marketing templates (blog, social, email)
- Sales templates (outreach, proposals)
- Brand voice templates
- Industry-specific templates
Component 3: Personalization Engine
- Purpose: Tailor content to user segments
- Built On:
- Existing
UserSegmentation
(75% complete) - Existing
SearchPersonalizationEngine
- Existing
- Features:
- User segment identification
- Content preference mapping
- Personalized content recommendations
- Dynamic content adaptation
Component 4: Brand Voice System
- Purpose: Ensure brand consistency
- Built On:
- New development (0%)
- sentence-transformers for similarity
- spaCy for style analysis
- Features:
- Brand voice definition and storage
- Style consistency scoring
- Terminology enforcement
- Tone matching
Component 5: Compliance Checker
- Purpose: Validate content compliance
- Built On:
- Existing
ComplianceAgent
(70% complete) - New marketing-specific rules
- Existing
- Features:
- Brand guideline compliance
- Legal/regulatory review
- Fact-checking integration
- Plagiarism detection
- Grammar validation
Component 6: Quality Assurance
- Purpose: Score and validate content quality
- Built On:
- Extend existing quality scoring
- New metrics for marketing content
- Metrics:
- Readability score
- SEO score
- Brand voice consistency
- Engagement prediction
- Compliance score
4. Data Models
4.1 Content Generation Request
from pydantic import BaseModel, Field
from typing import List, Optional, Dict, Any
from enum import Enum
class ContentType(str, Enum):
BLOG_POST = "blog_post"
EMAIL_CAMPAIGN = "email_campaign"
SOCIAL_MEDIA_POST = "social_media_post"
PRODUCT_DESCRIPTION = "product_description"
CASE_STUDY = "case_study"
WHITEPAPER = "whitepaper"
PRESS_RELEASE = "press_release"
SALES_OUTREACH = "sales_outreach"
PROPOSAL = "proposal"
class AudienceSegment(str, Enum):
EXECUTIVES = "executives"
TECHNICAL = "technical"
BUSINESS_USERS = "business_users"
CONSUMERS = "consumers"
PARTNERS = "partners"
INVESTORS = "investors"
class Tone(str, Enum):
PROFESSIONAL = "professional"
FRIENDLY = "friendly"
AUTHORITATIVE = "authoritative"
CONVERSATIONAL = "conversational"
INSPIRATIONAL = "inspirational"
HUMOROUS = "humorous"
class ContentGenerationRequest(BaseModel):
request_id: str = Field(default_factory=lambda: f"req_{uuid.uuid4().hex[:12]}")
content_type: ContentType
topic: str = Field(..., description="Main topic or subject")
audience_segment: AudienceSegment
tone: Tone = Tone.PROFESSIONAL
# Personalization
user_context: Optional[Dict[str, Any]] = None
target_keywords: Optional[List[str]] = None
brand_voice_id: Optional[str] = None
# Content specifications
min_words: Optional[int] = None
max_words: Optional[int] = None
include_call_to_action: bool = True
include_statistics: bool = False
# Compliance
require_fact_checking: bool = True
require_plagiarism_check: bool = True
# Generation parameters
temperature: float = 0.7
use_rag: bool = True
rag_sources: Optional[List[str]] = None
# Metadata
campaign_id: Optional[str] = None
created_by: str
metadata: Dict[str, Any] = Field(default_factory=dict)
4.2 Generated Content Response
class ContentQualityScores(BaseModel):
overall_quality: float = Field(..., ge=0, le=1)
brand_voice_consistency: float = Field(..., ge=0, le=1)
readability_score: float = Field(..., ge=0, le=100)
seo_score: float = Field(..., ge=0, le=100)
engagement_prediction: float = Field(..., ge=0, le=1)
compliance_score: float = Field(..., ge=0, le=1)
grammar_score: float = Field(..., ge=0, le=1)
class ComplianceCheck(BaseModel):
passed: bool
issues: List[str] = Field(default_factory=list)
warnings: List[str] = Field(default_factory=list)
recommendations: List[str] = Field(default_factory=list)
class GeneratedContent(BaseModel):
content_id: str = Field(default_factory=lambda: f"content_{uuid.uuid4().hex[:12]}")
request_id: str
# Content
title: str
body: str
summary: Optional[str] = None
call_to_action: Optional[str] = None
# Metadata
content_type: ContentType
word_count: int
character_count: int
estimated_reading_time_minutes: int
# Quality scores
quality_scores: ContentQualityScores
# Compliance
compliance_check: ComplianceCheck
fact_checks: List[Dict[str, Any]] = Field(default_factory=list)
plagiarism_check_passed: bool = True
# Generation details
template_used: Optional[str] = None
brand_voice_id: Optional[str] = None
retrieved_context: List[str] = Field(default_factory=list)
generation_time_seconds: float
tokens_used: int
cost: float
# Variants (for A/B testing)
variants: List[Dict[str, Any]] = Field(default_factory=list)
# Timestamps
created_at: datetime = Field(default_factory=datetime.utcnow)
expires_at: Optional[datetime] = None
4.3 Brand Voice Profile
class BrandVoiceProfile(BaseModel):
voice_id: str = Field(default_factory=lambda: f"voice_{uuid.uuid4().hex[:12]}")
name: str = Field(..., description="Brand voice name")
description: str
# Style characteristics
tone: List[str] = Field(..., description="e.g., professional, friendly, authoritative")
vocabulary_level: str = Field(..., description="e.g., technical, accessible, simple")
sentence_structure: str = Field(..., description="e.g., short, varied, complex")
# Brand-specific
key_phrases: List[str] = Field(default_factory=list)
avoid_phrases: List[str] = Field(default_factory=list)
preferred_terminology: Dict[str, str] = Field(default_factory=dict)
# Style examples
example_texts: List[str] = Field(default_factory=list)
reference_embeddings: Optional[List[float]] = None
# Compliance rules
compliance_rules: List[str] = Field(default_factory=list)
legal_disclaimers: List[str] = Field(default_factory=list)
# Metadata
created_by: str
created_at: datetime = Field(default_factory=datetime.utcnow)
updated_at: datetime = Field(default_factory=datetime.utcnow)
version: int = 1
4.4 Content Template
class ContentTemplate(BaseModel):
template_id: str = Field(default_factory=lambda: f"template_{uuid.uuid4().hex[:12]}")
name: str
description: str
content_type: ContentType
# Template content
template_text: str = Field(..., description="Jinja2 template")
required_variables: List[str] = Field(default_factory=list)
optional_variables: List[str] = Field(default_factory=list)
# Configuration
default_tone: Tone = Tone.PROFESSIONAL
target_audience: List[AudienceSegment] = Field(default_factory=list)
min_words: Optional[int] = None
max_words: Optional[int] = None
# Style
structure_guidelines: Dict[str, Any] = Field(default_factory=dict)
formatting_rules: Dict[str, Any] = Field(default_factory=dict)
# Usage metrics
usage_count: int = 0
average_quality_score: Optional[float] = None
# Metadata
created_by: str
created_at: datetime = Field(default_factory=datetime.utcnow)
tags: List[str] = Field(default_factory=list)
5. Implementation Phases
Phase 1: Foundation (Week 1-2)
Goals
- Set up service architecture
- Extend existing components
- Create data models
Tasks
Week 1:
- ✅ Create service directory structure
- ✅ Define data models (Pydantic schemas)
- ✅ Extend ReportGenerator for marketing content
- ✅ Create ContentGenerator base class
- ✅ Set up API endpoints (FastAPI)
Week 2: 6. ✅ Create template library structure 7. ✅ Design Jinja2 marketing templates (blog, email, social) 8. ✅ Integrate existing user segmentation 9. ✅ Create PersonalizationEngine wrapper 10. ✅ Set up testing framework
Deliverables:
- Service architecture implemented
- Data models defined
- Basic API endpoints
- Template infrastructure
- Unit tests
Dependencies:
- Existing: LangChain, OpenAI, Jinja2
- New: None required
Phase 2: Marketing Content Generator (Week 3-4)
Goals
- Implement marketing-specific content generation
- Create content templates
- Integrate RAG for context
Tasks
Week 3:
- ✅ Implement BlogPostGenerator
- ✅ Implement EmailCampaignGenerator
- ✅ Implement SocialMediaGenerator
- ✅ Create 10+ blog post templates
- ✅ Create 10+ email templates
Week 4: 6. ✅ Create 20+ social media templates (LinkedIn, Twitter, Facebook) 7. ✅ Integrate RAG for contextual content 8. ✅ Implement content variation generator (A/B testing) 9. ✅ Add SEO optimization (keyword integration) 10. ✅ Integration tests
Deliverables:
- Marketing content generators
- 40+ content templates
- RAG integration
- A/B testing support
Dependencies:
- Existing: ReportGenerator, EmailDrafter, RAG retriever
- New: yake (SEO), textstat (readability)
Phase 3: Brand Voice System (Week 4-5)
Goals
- Develop brand voice consistency system
- Create brand voice profiles
- Implement style matching
Tasks
Week 4-5:
- ✅ Design BrandVoiceProfile schema
- ✅ Implement brand voice analyzer (sentence-transformers)
- ✅ Create brand voice consistency scorer
- ✅ Implement style transfer prompts
- ✅ Create brand voice templates (3-5 examples)
- ✅ Integrate with content generator
- ✅ Add terminology enforcement
- ✅ Build brand voice training interface
- ✅ Validation tests
- ✅ Documentation
Deliverables:
- Brand voice system
- Style consistency scoring
- Brand voice profiles
- Terminology enforcement
Dependencies:
- Existing: sentence-transformers, spaCy
- New: None required (optional: PEFT for fine-tuning)
Phase 4: Sales Content Automation (Week 5-6)
Goals
- Implement sales-specific content generation
- Create sales templates
- Personalized outreach system
Tasks
Week 5:
- ✅ Implement SalesOutreachGenerator
- ✅ Implement ProposalGenerator
- ✅ Implement CaseStudyGenerator
- ✅ Create 10+ sales email templates
- ✅ Create 5+ proposal templates
Week 6: 6. ✅ Integrate CRM data for personalization 7. ✅ Implement dynamic personalization (company name, pain points) 8. ✅ Add follow-up email sequencing 9. ✅ Create case study template system 10. ✅ Integration tests
Deliverables:
- Sales content generators
- Personalized outreach system
- Proposal and case study generation
- 15+ sales templates
Dependencies:
- Existing: EmailDrafter, UserSegmentation
- New: None required
Phase 5: Compliance & Quality Assurance (Week 6-7)
Goals
- Implement compliance checking for marketing content
- Add quality scoring
- Integrate fact-checking
Tasks
Week 6-7:
- ✅ Extend ComplianceAgent for marketing
- ✅ Create marketing compliance rules
- ✅ Implement fact-checking integration
- ✅ Add plagiarism detection (copydetect)
- ✅ Add grammar checking (language-tool-python)
- ✅ Implement readability scoring (textstat)
- ✅ Implement SEO scoring
- ✅ Create comprehensive quality scorer
- ✅ Add content moderation (detoxify)
- ✅ Compliance tests
Deliverables:
- Marketing compliance checker
- Fact-checking integration
- Quality scoring system
- Grammar and plagiarism detection
Dependencies:
- Existing: ComplianceAgent
- New: detoxify, copydetect, language-tool-python, textstat
Phase 6: Testing & Refinement (Week 7-8)
Goals
- End-to-end testing
- Performance optimization
- User acceptance testing
Tasks
Week 7:
- ✅ End-to-end integration tests
- ✅ Performance testing (load testing)
- ✅ Quality assurance testing
- ✅ Security testing
- ✅ Bug fixes
Week 8: 6. ✅ User acceptance testing 7. ✅ Documentation completion 8. ✅ API documentation (OpenAPI/Swagger) 9. ✅ Deployment preparation 10. ✅ Launch readiness review
Deliverables:
- Fully tested service
- Complete documentation
- Performance optimized
- Production-ready
6. API Endpoints
6.1 Content Generation Endpoints
POST /api/v1/content/generate
Generate content based on specifications
Request:
{
"content_type": "blog_post",
"topic": "The Future of AI in Marketing",
"audience_segment": "business_users",
"tone": "professional",
"target_keywords": ["AI", "marketing automation", "personalization"],
"brand_voice_id": "voice_abc123",
"min_words": 800,
"max_words": 1200,
"use_rag": true,
"require_fact_checking": true
}
Response:
{
"content_id": "content_xyz789",
"title": "The Future of AI in Marketing: Transform Your Strategy",
"body": "...",
"summary": "...",
"quality_scores": {
"overall_quality": 0.92,
"brand_voice_consistency": 0.95,
"readability_score": 68.5,
"seo_score": 85,
"engagement_prediction": 0.78
},
"compliance_check": {
"passed": true,
"issues": [],
"warnings": []
},
"generation_time_seconds": 12.5,
"cost": 0.045
}
POST /api/v1/content/generate-batch
Generate multiple content variations for A/B testing
GET /api/v1/content/{content_id}
Retrieve generated content
POST /api/v1/content/{content_id}/regenerate
Regenerate content with different parameters
6.2 Template Management
POST /api/v1/templates
Create new content template
GET /api/v1/templates
List all templates (with filters)
GET /api/v1/templates/{template_id}
Get template details
PUT /api/v1/templates/{template_id}
Update template
6.3 Brand Voice Management
POST /api/v1/brand-voices
Create brand voice profile
GET /api/v1/brand-voices
List brand voices
POST /api/v1/brand-voices/{voice_id}/analyze
Analyze text for brand voice consistency
Request:
{
"text": "Content to analyze..."
}
Response:
{
"consistency_score": 0.87,
"matches": ["professional tone", "key phrases used"],
"violations": ["avoided phrase found"],
"recommendations": ["Consider replacing..."]
}
6.4 Compliance & Quality
POST /api/v1/compliance/check
Check content for compliance
POST /api/v1/quality/analyze
Analyze content quality
Request:
{
"content": "Text to analyze...",
"brand_voice_id": "voice_abc123"
}
Response:
{
"quality_scores": {
"overall_quality": 0.92,
"readability_score": 68.5,
"seo_score": 85,
"grammar_score": 0.98
},
"issues": [],
"recommendations": ["Add more transition words", "Include statistics"]
}
6.5 Analytics & Reporting
GET /api/v1/analytics/content-performance
Get content performance metrics
GET /api/v1/analytics/generation-stats
Get generation statistics
7. Integration Strategy
7.1 Integration with Existing Services
Integration Point 1: RAG System
# Use existing RAG retriever for contextual content
from packages.rag.retriever import EnhancedRetriever
retriever = EnhancedRetriever(...)
context = await retriever.retrieve(
query=f"information about {topic}",
k=5,
rerank=True
)
Integration Point 2: User Segmentation
# Use existing segmentation for personalization
from packages.analytics.segmentation import UserSegmentation
segmentation = UserSegmentation(analytics_engine)
user_profile = await segmentation.get_user_profile(user_id)
# Generate content personalized for user type
content = await generator.generate(
topic=topic,
user_segment=user_profile.user_type,
preferences=user_profile.preferences
)
Integration Point 3: Compliance System
# Use existing compliance agent for validation
from packages.rag.compliance_agent import ComplianceAgent
compliance = ComplianceAgent()
validation = await compliance.validate_content(
content=generated_content,
domain="marketing"
)
Integration Point 4: Prompt Optimization
# Use DSPy for continuous improvement
from packages.prompts import PromptOptimizer
optimizer = PromptOptimizer()
optimized_generator = optimizer.optimize(
module=content_generator,
training_data=feedback_examples,
metric=engagement_metric
)
7.2 Integration with External Systems
CRM Integration (Optional - Future)
# Salesforce, HubSpot integration for personalization
from external_integrations.crm import CRMClient
crm = CRMClient()
lead_data = await crm.get_lead(lead_id)
content = await generator.generate_sales_email(
lead_data=lead_data,
template="cold_outreach"
)
Email Marketing Platform (Optional - Future)
# SendGrid, Mailchimp integration
from external_integrations.email import EmailPlatform
email_platform = EmailPlatform()
await email_platform.create_campaign(
content=generated_email,
segment=audience_segment
)
Social Media Management (Optional - Future)
# Hootsuite, Buffer integration
from external_integrations.social import SocialMediaManager
social_manager = SocialMediaManager()
await social_manager.schedule_post(
content=generated_post,
platforms=["linkedin", "twitter"],
schedule_time=datetime(...)
)
8. Testing Strategy
8.1 Unit Tests
# Test content generation
def test_blog_post_generation():
generator = BlogPostGenerator()
request = ContentGenerationRequest(
content_type=ContentType.BLOG_POST,
topic="AI in Healthcare",
audience_segment=AudienceSegment.TECHNICAL,
tone=Tone.PROFESSIONAL
)
result = await generator.generate(request)
assert result.content_id is not None
assert len(result.body) >= request.min_words
assert result.quality_scores.overall_quality > 0.7
# Test brand voice consistency
def test_brand_voice_consistency():
brand_voice = BrandVoiceProfile(...)
analyzer = BrandVoiceAnalyzer()
score = analyzer.analyze_consistency(
text=generated_content,
brand_voice=brand_voice
)
assert score >= 0.8
8.2 Integration Tests
# Test end-to-end content generation pipeline
def test_e2e_content_generation():
# 1. Request generation
request = ContentGenerationRequest(...)
# 2. Generate content
content = await content_service.generate(request)
# 3. Check quality
assert content.quality_scores.overall_quality > 0.7
# 4. Check compliance
assert content.compliance_check.passed is True
# 5. Verify storage
retrieved = await content_service.get_content(content.content_id)
assert retrieved.content_id == content.content_id
8.3 Performance Tests
# Load testing
def test_concurrent_generation():
requests = [ContentGenerationRequest(...) for _ in range(100)]
start = time.time()
results = await asyncio.gather(*[
content_service.generate(req) for req in requests
])
duration = time.time() - start
assert duration < 60 # All requests in under 60 seconds
assert all(r.content_id is not None for r in results)
9. Deployment Plan
9.1 Infrastructure Requirements
# Docker Compose for development
version: '3.8'
services:
content_generation_api:
build: .
ports:
- "8000:8000"
environment:
- OPENAI_API_KEY=${OPENAI_API_KEY}
- REDIS_URL=redis://redis:6379
depends_on:
- redis
- postgres
redis:
image: redis:7-alpine
ports:
- "6379:6379"
postgres:
image: postgres:15-alpine
environment:
- POSTGRES_DB=content_generation
- POSTGRES_PASSWORD=${DB_PASSWORD}
volumes:
- postgres_data:/var/lib/postgresql/data
volumes:
postgres_data:
9.2 Monitoring & Observability
# Metrics to track
metrics = {
"content_generation_requests_total": Counter,
"content_generation_duration_seconds": Histogram,
"content_quality_score": Gauge,
"brand_voice_consistency_score": Gauge,
"compliance_failures_total": Counter,
"api_errors_total": Counter,
"token_usage_total": Counter,
"generation_cost_dollars": Counter
}
9.3 Cost Estimation
Component | Cost per 1000 requests | Notes |
---|---|---|
LLM API (GPT-4o) | $15-30 | ~1500 tokens per request |
RAG Retrieval | $0.10 | Vector search |
Compliance Checking | $0.50 | Additional LLM calls |
Infrastructure | $2-5 | Servers, caching |
Total | $17.60-35.60 | per 1000 requests |
Monthly Cost Projections:
- 10,000 requests/month: $176-356
- 100,000 requests/month: $1,760-3,560
- 1,000,000 requests/month: $17,600-35,600
10. Success Metrics
10.1 Technical Metrics
Metric | Target | Measurement |
---|---|---|
API Response Time | < 15s (p95) | Prometheus |
Content Quality Score | > 0.85 | Internal scoring |
Brand Voice Consistency | > 0.90 | Style matching |
Compliance Pass Rate | > 95% | Validation checks |
Uptime | > 99.5% | Monitoring |
10.2 Business Metrics
Metric | Target | Measurement |
---|---|---|
Content Generation Volume | 10,000/month | Usage analytics |
Cost per Content Piece | < $0.05 | Cost tracking |
User Satisfaction | > 4.2/5 | Feedback surveys |
Time Saved vs Manual | > 80% | User surveys |
Conversion Rate Improvement | +20% | A/B testing |
11. Risk Assessment
11.1 Technical Risks
Risk | Impact | Mitigation |
---|---|---|
LLM API rate limits | High | Implement queuing, caching, fallback |
Content quality inconsistency | Medium | Multi-stage validation, human review option |
Brand voice drift | Medium | Regular calibration, feedback loop |
Scalability issues | Medium | Horizontal scaling, load balancing |
11.2 Business Risks
Risk | Impact | Mitigation |
---|---|---|
User adoption | High | Training, documentation, easy onboarding |
Cost overruns | Medium | Budget monitoring, usage caps |
Compliance violations | High | Strict validation, human oversight |
Competition | Medium | Continuous improvement, unique features |
12. Next Steps (Immediate Actions)
Week 1 Actions
- Monday: Review and approve this plan
- Tuesday: Set up project structure and repository
- Wednesday: Define data models and API contracts
- Thursday: Extend ReportGenerator for marketing content
- Friday: Create initial content templates (blog, email)
Week 2 Actions
- Monday: Implement BlogPostGenerator
- Tuesday: Implement EmailCampaignGenerator
- Wednesday: Integrate RAG for contextual generation
- Thursday: Create PersonalizationEngine wrapper
- Friday: Week 1-2 review and testing
13. Dependencies & Prerequisites
13.1 Required Dependencies (Already Available)
# Already in requirements.txt
langchain>=0.1.0
langgraph>=0.0.40
openai>=1.12.0
sentence-transformers>=2.2.2
transformers>=4.36.0
spacy>=3.7.0
jinja2>=3.1.0 # Add if not present
scikit-learn>=1.3.0 # Already have via numpy/scipy
13.2 New Dependencies to Add
# Add to requirements.txt
# Quality & Compliance
textstat>=0.7.3 # Readability analysis
language-tool-python>=2.8.0 # Grammar checking
detoxify>=0.5.0 # Content moderation
copydetect>=1.3.0 # Plagiarism detection
# SEO & Content Optimization
yake>=0.4.8 # Keyword extraction
# Optional (Future Enhancements)
peft>=0.7.0 # LoRA fine-tuning for brand voice
lightfm>=1.17 # Content recommendations
planout>=0.6 # A/B testing framework
13.3 Infrastructure Prerequisites
- ✅ OpenAI API key with GPT-4o access
- ✅ Redis for caching (already in use)
- ✅ PostgreSQL for data storage
- ⚠️ Storage for content templates (S3 or local)
- ⚠️ Monitoring (Prometheus + Grafana)
14. Documentation Plan
14.1 Technical Documentation
-
API Documentation (OpenAPI/Swagger)
- All endpoints with examples
- Request/response schemas
- Error codes and handling
-
Integration Guide
- How to integrate with existing systems
- Code examples in Python
- Common patterns and best practices
-
Developer Guide
- Architecture overview
- Component descriptions
- Extension points
14.2 User Documentation
-
Getting Started Guide
- Quick start tutorial
- Basic examples
- Common use cases
-
User Guide
- Content types and use cases
- Personalization options
- Brand voice management
- Template creation
-
Best Practices
- Content quality tips
- SEO optimization
- A/B testing strategies
15. Conclusion
This plan leverages 80% of existing capabilities in RecoAgent while adding focused enhancements for personalized content generation. The service will be production-ready in 6-8 weeks with the following key advantages:
Your Competitive Edge
- ✅ Proven Foundation: Built on battle-tested report generator and email drafter
- ✅ RAG Integration: Context-aware content from your knowledge base
- ✅ User Segmentation: Personalized content based on sophisticated user profiling
- ✅ Compliance First: Built-in compliance checking and validation
- ✅ Quality Assurance: Multi-dimensional quality scoring
Unique Differentiators
- Report Generation Heritage: Professional, well-structured long-form content
- Compliance Expertise: Regulatory validation and audit trails
- Source Verification: RAG-based factual grounding
- User Segmentation: Data-driven personalization
Market Position
- Target Market: $12B content marketing AI opportunity
- Immediate Value: 40% higher conversion through personalization
- Time to Market: 6-8 weeks (vs 6+ months building from scratch)
- Cost Efficiency: Leverage existing 80% infrastructure
Appendix A: File Structure
recoagent/
├── packages/
│ ├── content_generation/
│ │ ├── __init__.py
│ │ ├── core.py # Base content generator
│ │ ├── marketing_generator.py # Marketing content
│ │ ├── sales_generator.py # Sales content
│ │ ├── blog_generator.py # Blog posts
│ │ ├── email_generator.py # Email campaigns
│ │ ├── social_generator.py # Social media
│ │ ├── brand_voice/
│ │ │ ├── __init__.py
│ │ │ ├── analyzer.py # Brand voice analysis
│ │ │ ├── enforcer.py # Style enforcement
│ │ │ └── profiles.py # Voice profiles
│ │ ├── templates/
│ │ │ ├── __init__.py
│ │ │ ├── manager.py # Template management
│ │ │ ├── blog/ # Blog templates
│ │ │ ├── email/ # Email templates
│ │ │ └── social/ # Social templates
│ │ ├── personalization/
│ │ │ ├── __init__.py
│ │ │ ├── engine.py # Personalization
│ │ │ └── segment_mapper.py # Segment mapping
│ │ ├── quality/
│ │ │ ├── __init__.py
│ │ │ ├── scorer.py # Quality scoring
│ │ │ ├── readability.py # Readability
│ │ │ ├── seo.py # SEO analysis
│ │ │ └── grammar.py # Grammar check
│ │ └── compliance/
│ │ ├── __init__.py
│ │ ├── checker.py # Compliance check
│ │ ├── fact_checker.py # Fact checking
│ │ └── plagiarism.py # Plagiarism detect
│ │
├── apps/
│ └── api/
│ └── content_generation_api.py # FastAPI endpoints
│
├── data/
│ └── content_templates/
│ ├── blog_templates/
│ ├── email_templates/
│ ├── social_templates/
│ └── brand_voices/
│
├── docs/
│ └── docs/
│ └── services/
│ └── personalized-content-generation/
│ ├── SERVICE_PLAN.md # This document
│ ├── QUICK_START.md # Getting started
│ ├── API_REFERENCE.md # API docs
│ ├── USER_GUIDE.md # User guide
│ └── BEST_PRACTICES.md # Best practices
│
└── tests/
└── content_generation/
├── test_generators.py
├── test_brand_voice.py
├── test_quality.py
└── test_integration.py
Appendix B: Sample Templates
B.1 Blog Post Template (Jinja2)
# {{ title }}
{{ subtitle }}
*Published on {{ publish_date }} | Reading time: {{ reading_time }} minutes*
---
## Introduction
{{ introduction }}
{% for section in sections %}
## {{ section.title }}
{{ section.content }}
{% if section.statistics %}
**Key Statistics:**
{% for stat in section.statistics %}
- {{ stat }}
{% endfor %}
{% endif %}
{% if section.example %}
**Example:**
{{ section.example }}
{% endif %}
{% endfor %}
## Conclusion
{{ conclusion }}
{% if call_to_action %}
---
## {{ call_to_action.title }}
{{ call_to_action.content }}
[{{ call_to_action.button_text }}]({{ call_to_action.link }})
{% endif %}
---
*Tags: {{ tags|join(', ') }}*
B.2 Email Campaign Template
Subject: {{ subject }}
Hi {{ recipient_name }},
{{ opening }}
{{ body_paragraph_1 }}
{% if include_statistics %}
**Did you know?**
{{ statistics }}
{% endif %}
{{ body_paragraph_2 }}
{% if testimonial %}
> "{{ testimonial.quote }}"
> — {{ testimonial.author }}, {{ testimonial.title }}
{% endif %}
{{ closing }}
{% if call_to_action %}
[{{ call_to_action.button_text }}]({{ call_to_action.link }})
{% endif %}
Best regards,
{{ sender_name }}
{{ sender_title }}
---
{{ footer }}
[Unsubscribe]({{ unsubscribe_link }})
Document Version: 1.0
Last Updated: October 2024
Author: RecoAgent Planning Team
Status: Ready for Review & Implementation