Skip to main content

Personalized Content Generation - Quick Reference

TL;DR

Build a Personalized Content Generation Service in 6-8 weeks by leveraging 80% existing RecoAgent capabilities. Generate blog posts, emails, social media content with brand voice consistency, user personalization, and compliance checking.


What We're Building

┌─────────────────────────────────────────────────────┐
│ Personalized Content Generation Service │
├─────────────────────────────────────────────────────┤
│ │
│ 📝 Marketing Content 💼 Sales Content │
│ • Blog posts • Outreach emails │
│ • Email campaigns • Proposals │
│ • Social media • Case studies │
│ • Product descriptions │
│ │
│ ✅ Compliance Checker 🎨 Brand Voice System │
│ • Brand guidelines • Style consistency │
│ • Legal review • Tone matching │
│ • Fact-checking • Terminology enforcement │
│ │
│ 👥 Personalization 📊 Quality Assurance │
│ • User segmentation • Readability scoring │
│ • Audience targeting • SEO optimization │
│ • Content adaptation • Grammar checking │
│ │
└─────────────────────────────────────────────────────┘

What We Already Have ✅

ComponentCompletionLocationCan Reuse
Report Generator80%packages/agents/process_agents/report_generator.py✅ Yes
Content Formatting85%packages/rag/structured_formatting.py✅ Yes
User Segmentation75%packages/analytics/segmentation.py✅ Yes
Email Drafter90%packages/agents/process_agents/email_drafter.py✅ Yes
Compliance Agent70%packages/rag/compliance_agent.py✅ Yes
Prompt Optimization85%packages/prompts/optimization.py✅ Yes
Template System60%packages/use_case_components/templates/✅ Yes

Leverage Score: 80% of infrastructure already exists!


What We Need to Build 🔨

ComponentEffortTimeline
Content TemplatesMedium1-2 weeks
Brand Voice SystemMedium2-3 weeks
Marketing GeneratorsLow1-2 weeks
Sales GeneratorsLow1-2 weeks
Quality ScoringLow1 week
API EndpointsLow1 week

Total Timeline: 6-8 weeks


Libraries We'll Use

Already Integrated ✅

# Content Generation
langchain>=0.1.0 # LLM orchestration
openai>=1.12.0 # GPT-4o
sentence-transformers>=2.2.2 # Brand voice matching
spacy>=3.7.0 # Style analysis
scikit-learn>=1.3.0 # User clustering
jinja2>=3.1.0 # Templates

Will Add 📦

# Quality & Compliance
textstat==0.7.3 # Readability
language-tool-python==2.8.0 # Grammar
detoxify==0.5.0 # Content safety
copydetect==1.3.0 # Plagiarism
yake==0.4.8 # SEO keywords

Total New Dependencies: 5 lightweight libraries


8-Week Implementation Plan

Phase 1: Foundation (Week 1-2)

  • ✅ Service architecture
  • ✅ Data models (Pydantic)
  • ✅ API endpoints (FastAPI)
  • ✅ Template infrastructure
  • ✅ Testing framework

Phase 2: Marketing Content (Week 3-4)

  • ✅ Blog post generator
  • ✅ Email campaign generator
  • ✅ Social media generator
  • ✅ 40+ content templates
  • ✅ RAG integration

Phase 3: Brand Voice (Week 4-5)

  • ✅ Brand voice profiles
  • ✅ Style consistency scorer
  • ✅ Terminology enforcement
  • ✅ Voice training interface

Phase 4: Sales Content (Week 5-6)

  • ✅ Sales outreach generator
  • ✅ Proposal generator
  • ✅ Case study generator
  • ✅ Personalized sequences

Phase 5: Compliance (Week 6-7)

  • ✅ Marketing compliance rules
  • ✅ Fact-checking integration
  • ✅ Quality scoring
  • ✅ Safety checks

Phase 6: Testing & Launch (Week 7-8)

  • ✅ End-to-end testing
  • ✅ Performance optimization
  • ✅ Documentation
  • ✅ Production deployment

Core API Endpoints

Generate Content

POST /api/v1/content/generate

Request:

{
"content_type": "blog_post",
"topic": "The Future of AI in Marketing",
"audience_segment": "business_users",
"tone": "professional",
"brand_voice_id": "voice_abc123",
"use_rag": true
}

Response:

{
"content_id": "content_xyz789",
"title": "The Future of AI in Marketing",
"body": "...",
"quality_scores": {
"overall_quality": 0.92,
"brand_voice_consistency": 0.95,
"readability_score": 68.5,
"seo_score": 85
},
"generation_time_seconds": 12.5,
"cost": 0.045
}

Manage Brand Voice

POST /api/v1/brand-voices
GET /api/v1/brand-voices
POST /api/v1/brand-voices/{voice_id}/analyze

Check Compliance

POST /api/v1/compliance/check
POST /api/v1/quality/analyze

Content Types Supported

Marketing Content

  • 📝 Blog Posts: Long-form, SEO-optimized
  • 📧 Email Campaigns: Personalized newsletters
  • 📱 Social Media: LinkedIn, Twitter, Facebook posts
  • 📦 Product Descriptions: E-commerce content
  • 📄 Whitepapers: Technical deep-dives
  • 📰 Press Releases: Company announcements

Sales Content

  • ✉️ Outreach Emails: Personalized prospecting
  • 📊 Proposals: Custom sales proposals
  • 🎯 Case Studies: Customer success stories
  • 🔄 Follow-up Sequences: Automated nurturing

Quality Metrics

Content Quality Scores (0-1)

  • Overall Quality: Comprehensive assessment
  • Brand Voice Consistency: Style matching
  • Engagement Prediction: Estimated engagement
  • Compliance Score: Guideline adherence

Readability Metrics

  • Flesch Reading Ease: 0-100 (higher = easier)
  • Grade Level: U.S. education grade level
  • Word Count: Total words
  • Reading Time: Estimated minutes

SEO Metrics

  • SEO Score: 0-100
  • Keyword Density: Target keyword usage
  • Meta Description: Auto-generated
  • Title Optimization: SEO-friendly titles

Brand Voice System

Define Brand Voice

brand_voice = BrandVoiceProfile(
name="Company Professional",
description="Authoritative yet approachable",
tone=["professional", "friendly", "expert"],
vocabulary_level="accessible",
key_phrases=["innovative solutions", "customer-centric"],
avoid_phrases=["cutting-edge", "revolutionary"],
example_texts=[...]
)

Check Consistency

analyzer = BrandVoiceAnalyzer()
score = analyzer.analyze_consistency(
text=generated_content,
brand_voice=brand_voice
)
# Returns: 0.95 (95% consistent)

Personalization System

User Segments

  • Executives: High-level strategic content
  • Technical: Detailed, technical depth
  • Business Users: Practical, ROI-focused
  • Consumers: Simple, benefit-driven
  • Partners: Collaborative, mutual value
  • Investors: Financial, growth-focused

Personalization Example

# Generate for executive audience
content = await generator.generate(
content_type=ContentType.BLOG_POST,
topic="AI ROI",
audience_segment=AudienceSegment.EXECUTIVES,
tone=Tone.AUTHORITATIVE
)
# Result: High-level strategic perspective

# Same topic for technical audience
content = await generator.generate(
content_type=ContentType.BLOG_POST,
topic="AI ROI",
audience_segment=AudienceSegment.TECHNICAL,
tone=Tone.PROFESSIONAL
)
# Result: Technical implementation details

Compliance Checking

Brand Guidelines

  • ✅ Terminology consistency
  • ✅ Prohibited phrase detection
  • ✅ Tone appropriateness
  • ✅ Legal disclaimer inclusion

Content Safety

  • ✅ Toxicity detection (detoxify)
  • ✅ Inappropriate content filtering
  • ✅ Sentiment validation

Quality Assurance

  • ✅ Grammar checking (language-tool-python)
  • ✅ Plagiarism detection (copydetect)
  • ✅ Fact-checking (optional integration)

Cost Estimation

API Costs (per 1,000 content pieces)

ComponentCost
GPT-4o Generation$15-30
RAG Retrieval$0.10
Compliance Checking$0.50
Infrastructure$2-5
Total$17.60-35.60

Monthly Projections

  • 10,000 pieces: $176-356/month
  • 100,000 pieces: $1,760-3,560/month
  • 1M pieces: $17,600-35,600/month

Performance Targets

MetricTargetMeasurement
API Response Time< 15s (p95)Prometheus
Content Quality Score> 0.85Internal scoring
Brand Voice Consistency> 0.90Style matching
Compliance Pass Rate> 95%Validation
Uptime> 99.5%Monitoring

Success Metrics

Technical KPIs

  • ✅ 10,000 content generations/month
  • ✅ < 15s average generation time
  • ✅ > 0.85 average quality score
  • ✅ > 95% compliance pass rate

Business KPIs

  • ✅ 40% higher conversion rates (vs non-personalized)
  • ✅ 80% time saved vs manual creation
  • ✅ > 4.2/5 user satisfaction
  • ✅ < $0.05 cost per content piece

Your Competitive Edge

1. Report Generation Heritage ⭐

  • Professional, well-structured content
  • Multi-format export (PDF, DOCX, HTML)
  • Already proven in production

2. RAG Integration ⭐

  • Context-aware generation
  • Source verification
  • Factual grounding

3. User Segmentation ⭐

  • Data-driven personalization
  • Behavior-based targeting
  • Machine learning clustering

4. Compliance Expertise ⭐

  • Regulatory validation
  • Audit trails
  • Domain-specific rules

5. Quality Assurance ⭐

  • Multi-dimensional scoring
  • Automated validation
  • Continuous improvement

Quick Start (Development)

1. Install Dependencies

# Install new libraries
pip install textstat==0.7.3 \
language-tool-python==2.8.0 \
detoxify==0.5.0 \
copydetect==1.3.0 \
yake==0.4.8

2. Create Service Structure

mkdir -p packages/content_generation/{marketing,sales,brand_voice,quality}
mkdir -p data/content_templates/{blog,email,social}

3. Extend Existing Components

# Extend ReportGenerator for marketing
from packages.agents.process_agents.report_generator import ReportGenerator

class MarketingContentGenerator(ReportGenerator):
"""Marketing-specific content generation"""
pass

4. Create Templates

<!-- data/content_templates/blog/tech_blog_post.html -->
# {{ title }}

{{ introduction }}

{% for section in sections %}
## {{ section.title }}
{{ section.content }}
{% endfor %}

{{ conclusion }}

5. Run API

# Start development server
uvicorn apps.api.content_generation_api:app --reload --port 8000


Support & Questions

Internal Resources

  • Planning Doc: Full 15,000-word plan available
  • Team Expertise: Already have LangChain, RAG, compliance experience
  • Infrastructure: 80% already built and tested

Implementation Support

  • Phase-by-phase breakdown
  • Code templates and examples
  • Integration patterns documented

Decision Matrix

Should You Build This?

QuestionAnswer
Can leverage existing code?✅ Yes (80%)
Market opportunity?✅ Yes ($12B)
Team has expertise?✅ Yes (LangChain, RAG)
Time to market?✅ Fast (6-8 weeks)
ROI positive?✅ Yes (40% conversion boost)
Infrastructure ready?✅ Yes (mostly exists)

Recommendation: ✅ Proceed with implementation


Next Steps

This Week

  1. ✅ Review full service plan
  2. ✅ Approve architecture and timeline
  3. ✅ Set up project structure
  4. ✅ Define data models
  5. ✅ Create initial templates

Next Week

  1. ✅ Implement core generators
  2. ✅ Integrate existing components
  3. ✅ Create template library
  4. ✅ Set up testing framework
  5. ✅ Begin API development

Contact

For questions about this plan:

  • Technical Lead: Review full SERVICE_PLAN.md
  • Implementation Details: See LIBRARY_COMPARISON.md
  • Timeline Questions: See 8-week breakdown in SERVICE_PLAN.md

Quick Reference Version: 1.0
Last Updated: October 9, 2025
Status: Ready for Implementation