Comprehensive Error Handling System Guide
Overviewβ
The Enterprise RAG Error Handling System transforms technical errors into user-friendly experiences with guided resolution paths. This system provides contextual error messages, intelligent recovery suggestions, escalation management, and comprehensive analytics.
Key Featuresβ
- User-Friendly Error Classification: Maps technical errors to understandable categories
- Contextual Error Messages: Explains what happened and why in plain language
- Intelligent Recovery Suggestions: Provides actionable steps based on user context
- Automatic Escalation: Routes critical errors to human support when needed
- Comprehensive Analytics: Tracks error patterns and user satisfaction
- Feedback Collection: Gathers user input on error message effectiveness
Architectureβ
Core Componentsβ
- ErrorClassifier: Categorizes technical errors into user-friendly types
- ErrorRecoverySystem: Generates intelligent recovery suggestions
- ErrorEscalationManager: Handles escalation to human support
- ErrorAnalytics: Tracks and analyzes error patterns
- ComprehensiveErrorHandler: Orchestrates all components
Error Categoriesβ
- RETRIEVAL_FAILURE: Issues accessing knowledge base
- GENERATION_TIMEOUT: Response generation taking too long
- PERMISSION_DENIED: Access restrictions
- RATE_LIMIT_EXCEEDED: Too many requests
- AUTHENTICATION_FAILED: Login/session issues
- NETWORK_ERROR: Connection problems
- DATA_NOT_FOUND: No relevant information found
- CONFIGURATION_ERROR: System configuration issues
- UNKNOWN_ERROR: Unclassified errors
Error Severity Levelsβ
- LOW: Minor issues, minimal impact
- MEDIUM: Moderate issues, some user impact
- HIGH: Significant issues, major user impact
- CRITICAL: System-breaking issues, immediate attention required
Usageβ
Basic Error Handlingβ
from packages.rag.error_handling import create_error_handler, ErrorContext
# Create error handler
handler = create_error_handler()
# Create error context
context = ErrorContext(
user_id="user123",
session_id="session456",
query="How to configure the API?",
component="api_configuration"
)
# Handle an error
try:
# Some operation that might fail
result = risky_operation()
except Exception as e:
user_error = await handler.handle_error(e, context)
print(f"User-friendly message: {user_error.message}")
print(f"Suggested actions: {user_error.suggested_actions}")
Advanced Error Handling with User Contextβ
# Add user context for better recovery suggestions
user_context = {
"user_id": "user123",
"role": "developer",
"experience_level": "intermediate",
"preferred_language": "en"
}
user_error = await handler.handle_error(
error,
context,
user_context=user_context
)
# Get recovery suggestions tailored to user
recovery_suggestions = user_error.recovery_suggestions
Error Analyticsβ
from packages.rag.error_analytics_dashboard import create_error_analytics_dashboard
# Create analytics dashboard
dashboard = create_error_analytics_dashboard()
# Add error data
await dashboard.add_error_data(user_error, "resolved")
# Get metrics
metrics = await dashboard.get_error_metrics(time_window_hours=24)
print(f"Total errors: {metrics.total_errors}")
print(f"User satisfaction: {metrics.user_satisfaction['overall_satisfaction']}")
# Generate insights
insights = await dashboard.generate_insights()
for insight in insights:
print(f"Insight: {insight.title}")
print(f"Actions: {insight.recommended_actions}")
User Feedback Collectionβ
# Record user feedback on error message helpfulness
await handler.record_user_feedback(
error_id="error123",
user_id="user456",
helpful=True,
comments="The error message was very clear and helpful"
)
# Record error resolution
await dashboard.add_resolution_data(
error_id="error123",
resolution_method="retry_with_different_parameters",
resolution_time_minutes=5.0,
success=True
)
API Endpointsβ
Error Handlingβ
POST /errors/handle
- Handle an error and get user-friendly responsePOST /errors/feedback
- Submit user feedback on error messagesPOST /errors/resolution
- Track error resolution
Analyticsβ
GET /errors/analytics
- Get error metrics and statisticsGET /errors/insights
- Get actionable insightsGET /errors/report
- Generate comprehensive error reportGET /errors/dashboard
- Get dashboard visualization data
Exportβ
GET /errors/export/metrics
- Export metrics to JSONGET /errors/export/report
- Export report to JSON
Configurationβ
Error Classification Patternsβ
The system uses regex patterns to classify errors. You can customize these patterns:
# Add custom error pattern
from packages.rag.error_handling import ErrorPattern, ErrorCategory, ErrorSeverity
custom_pattern = ErrorPattern(
pattern_type="custom_error",
regex_pattern=r"(?i).*custom.*error.*pattern",
category=ErrorCategory.UNKNOWN_ERROR,
severity=ErrorSeverity.MEDIUM,
confidence=0.8
)
# Add to classifier
classifier = ErrorClassifier()
classifier.patterns.append(custom_pattern)
Escalation Rulesβ
Configure when errors should be escalated to human support:
escalation_rules = {
"auto_escalate_conditions": [
{"severity": ErrorSeverity.CRITICAL, "immediate": True},
{"severity": ErrorSeverity.HIGH, "count": 3, "time_window_minutes": 10},
{"category": ErrorCategory.PERMISSION_DENIED, "immediate": True}
],
"escalation_contacts": {
"technical": "tech-support@company.com",
"permissions": "it-admin@company.com",
"general": "support@company.com"
}
}
Error Message Customizationβ
Category-Specific Messagesβ
Each error category has predefined user-friendly messages. You can customize these:
# Customize error messages
category_details = {
"title": "Custom Error Title",
"message": "Custom user-friendly message",
"explanation": "Detailed explanation of what happened",
"suggested_actions": [ResolutionAction.RETRY, ResolutionAction.CONTACT_SUPPORT],
"workarounds": ["Custom workaround 1", "Custom workaround 2"],
"escalation_required": False,
"recovery_suggestions": ["Custom recovery suggestion"]
}
Localizationβ
Support multiple languages by customizing error messages:
# Language-specific error messages
error_messages = {
"en": {
"title": "Unable to Find Information",
"message": "I'm having trouble accessing the knowledge base."
},
"es": {
"title": "No se pudo encontrar informaciΓ³n",
"message": "Tengo problemas para acceder a la base de conocimientos."
}
}
Monitoring and Alertingβ
Error Metricsβ
Monitor key error metrics:
- Total Error Count: Track overall error volume
- Error Rate by Category: Identify problematic areas
- User Satisfaction: Measure error message effectiveness
- Resolution Time: Track how quickly errors are resolved
- Escalation Rate: Monitor escalation frequency
Alerting Thresholdsβ
Set up alerts for critical metrics:
alert_thresholds = {
"high_error_rate": {
"threshold": 50, # errors per hour
"action": "email_admin"
},
"low_satisfaction": {
"threshold": 0.7, # satisfaction rate
"action": "review_messages"
},
"high_escalation_rate": {
"threshold": 0.3, # escalation rate
"action": "investigate_system"
}
}
Best Practicesβ
Error Message Designβ
- Be Clear and Concise: Use simple, jargon-free language
- Explain the Impact: Tell users how the error affects them
- Provide Next Steps: Give specific actions users can take
- Avoid Technical Details: Hide technical information from end users
- Be Empathetic: Acknowledge user frustration
Recovery Suggestionsβ
- Context-Aware: Tailor suggestions to user's situation
- Actionable: Provide specific, doable steps
- Progressive: Start with simple solutions, escalate if needed
- Educational: Help users understand and prevent future errors
Analytics Usageβ
- Regular Monitoring: Check error metrics daily
- Trend Analysis: Look for patterns over time
- User Feedback: Act on user feedback to improve messages
- Continuous Improvement: Use insights to enhance error handling
Troubleshootingβ
Common Issuesβ
Error Classification Not Working
- Check regex patterns in ErrorClassifier
- Verify error message format
- Test with sample error messages
Recovery Suggestions Not Relevant
- Review user context data
- Check recovery strategy implementations
- Test with different user profiles
Escalation Not Triggering
- Verify escalation rules configuration
- Check error severity and category
- Review escalation manager logs
Analytics Data Missing
- Ensure error data is being recorded
- Check time window filters
- Verify data retention settings
Debug Modeβ
Enable debug logging for troubleshooting:
import logging
# Enable debug logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger("packages.rag.error_handling")
logger.setLevel(logging.DEBUG)
Performance Considerationsβ
Memory Managementβ
- Error history is limited to 10,000 records
- User feedback data is limited to 1,000 records per error
- Classification cache is limited to 1,000 entries
Async Operationsβ
- All operations are async for better performance
- Use background tasks for non-critical operations
- Batch analytics operations when possible
Cachingβ
- Error classification results are cached
- Analytics data is cached for 5 minutes
- User context is cached for 1 hour
Security Considerationsβ
Data Privacyβ
- User IDs are hashed in analytics
- Sensitive error details are filtered
- Personal information is not logged
Access Controlβ
- Error details are restricted by user permissions
- Escalation contacts are role-based
- Analytics access requires appropriate privileges
Integration Examplesβ
FastAPI Integrationβ
from fastapi import FastAPI, HTTPException
from packages.rag.error_handling import create_error_handler, ErrorContext
app = FastAPI()
handler = create_error_handler()
@app.exception_handler(Exception)
async def global_exception_handler(request: Request, exc: Exception):
context = ErrorContext(
user_id=request.headers.get("user-id"),
query=request.url.path,
component="api"
)
user_error = await handler.handle_error(exc, context)
return JSONResponse(
status_code=500,
content={
"error": user_error.message,
"suggestions": user_error.suggestions,
"error_id": user_error.error_id
}
)
Django Integrationβ
from django.http import JsonResponse
from packages.rag.error_handling import create_error_handler, ErrorContext
handler = create_error_handler()
def error_view(request):
try:
# Some operation
result = risky_operation()
except Exception as e:
context = ErrorContext(
user_id=request.user.id,
query=request.GET.get("q", ""),
component="django_view"
)
user_error = await handler.handle_error(e, context)
return JsonResponse({
"error": user_error.message,
"suggestions": user_error.suggestions
})
Future Enhancementsβ
Planned Featuresβ
- Machine Learning Classification: Use ML models for better error classification
- Predictive Analytics: Predict errors before they occur
- Auto-Recovery: Automatically attempt error recovery
- Multi-Language Support: Full internationalization
- Voice Error Messages: Audio error explanations
- Visual Error Guides: Interactive error resolution guides
Extension Pointsβ
- Custom Classifiers: Add domain-specific error classifiers
- Custom Recovery Strategies: Implement specialized recovery logic
- Custom Analytics: Add business-specific metrics
- Custom Escalation: Integrate with existing ticketing systems
Supportβ
For questions, issues, or contributions:
- Documentation: See this guide and API documentation
- Issues: Report bugs and feature requests
- Contributions: Submit pull requests for improvements
- Support: Contact the development team
Licenseβ
This error handling system is part of the Enterprise RAG project and follows the same licensing terms.