Skip to main content

LLM & RAG Library Comparison & Selection Guide

Date: October 9, 2025
Purpose: Detailed comparison of open-source libraries for LLM & RAG enhancements


πŸ“Š Library Comparison Matrix​

1. Multi-LLM Abstraction Layers​

LibraryProsConsRecommendationPriority
LangChain (Current)- Already integrated
- Extensive ecosystem
- Good documentation
- Active community
- Can be verbose
- Some abstraction overhead
βœ… Keep as primaryπŸ”΄ High
LiteLLM- Unified API (OpenAI format)
- 100+ models
- Simple migration
- Load balancing built-in
- Less feature-rich than LangChain
- Newer project
βœ… Add for routing🟑 Medium
Haystack- Production-ready
- Great for pipelines
- Strong retrieval focus
- Different paradigm
- Migration effort high
❌ Skip (LangChain sufficient)⚫ Low
LlamaIndex- Excellent for RAG
- Data connectors
- Good indexing
- Overlap with LangChain
- Another abstraction layer
❌ Skip (too similar)⚫ Low

Decision: Keep LangChain, add LiteLLM for provider routing


2. Advanced Reranking​

LibraryProsConsRecommendationPriority
RAGatouille- Production ColBERT wrapper
- Easy to use
- Pre-trained models
- 10-20% quality boost
- Larger model size
- Slower than cross-encoder
βœ… High priorityπŸ”΄ High
ColBERT v2- State-of-the-art
- Late interaction
- Best quality
- Complex setup
- Training required
βœ… Via RAGatouilleπŸ”΄ High
Cohere Rerank API- Cloud-based
- No infrastructure
- High quality
- External dependency
- Cost per request
βœ… Add as option🟒 Low
Cross-Encoder (Current)- Fast
- Good baseline
- Already integrated
- Lower quality than ColBERTβœ… Keep as fallbackπŸ”΄ High

Decision: Add RAGatouille (ColBERT), keep cross-encoder as fallback, optionally add Cohere


3. Prompt Engineering & Optimization​

LibraryProsConsRecommendationPriority
DSPy- Automatic optimization
- Declarative syntax
- Research-backed
- Stanford project
- Learning curve
- Newer paradigm
- Limited examples
βœ… High priority🟑 Medium
LangChain Hub- Prompt versioning
- Community prompts
- Easy integration
- Simple features
- Manual optimization
βœ… Add for versioning🟒 Low
PromptTools- Testing framework
- A/B testing built-in
- Good for experiments
- Limited features
- Manual work
βœ… Add for testing🟒 Low
Guidance (Microsoft)- Structured generation
- Template language
- Type safety
- Different approach
- Less flexible
⚠️ Evaluate later⚫ Low
LMQL- Query language for LLMs
- Constraints
- Research project
- Niche use case
- Small community
❌ Skip for now⚫ Low

Decision: Start with DSPy for optimization, add LangChain Hub for versioning


4. Prompt Compression​

LibraryProsConsRecommendationPriority
LLMLingua- 2-3x compression
- 40-60% cost savings
- >90% quality maintained
- Microsoft Research
- Adds latency (compression time)
- Python only
βœ… Immediate addπŸ”΄ High
LongLLMLingua- Better for long docs
- Same benefits as LLMLingua
- Same cons
- Slightly newer
βœ… Use for long docs🟑 Medium
AutoCompressor- Context compression
- Learned compression
- More complex setup
- Training needed
⚠️ Evaluate later⚫ Low

Decision: Add LLMLingua immediately for cost savings


5. Semantic Caching​

LibraryProsConsRecommendationPriority
GPTCache- Production-ready
- Multiple backends
- Semantic similarity
- 90%+ cost reduction
- Additional infrastructure
- Cache management needed
βœ… High priority🟑 Medium
Momento- Serverless cache
- No infrastructure
- LLM-focused
- Vendor lock-in
- Cost per request
⚠️ Consider for cloud⚫ Low
Redis + Embeddings (Current)- Already have Redis
- Full control
- No new dependencies
- Manual implementation
- More code to maintain
βœ… Keep as baselineπŸ”΄ High

Decision: Integrate GPTCache with existing Redis, benchmark against current implementation


6. Vector Databases​

DatabaseProsConsCurrent StatusRecommendation
OpenSearch- Already integrated
- Production-ready
- Hybrid search
- Analytics features
- Heavier than specialized DBs
- More expensive
βœ… Implementedβœ… Keep as primary
MongoDB Atlas- Already integrated
- Transactional + vector
- Single database
- Newer vector search
- Limited features vs OpenSearch
βœ… Implementedβœ… Keep for MongoDB users
Qdrant- Fast
- Easy to use
- Good filtering
- Already implemented
- Less mature than OpenSearch
βœ… Implementedβœ… Keep as option
Milvus- Scalable
- High performance
- Open source
- Complex setup
- Overkill for most
❌ Not needed⚫ Low priority
Weaviate- RAG-focused
- Good features
- GraphQL API
- Already have 5 stores
- Not needed
❌ Skip⚫ Low
Chroma- Simple
- Good for prototyping
- Not production-scale
- Limited features
❌ Skip⚫ Low
Pinecone- Serverless
- No infrastructure
- Vendor lock-in
- Cost per request
- Already have better options
❌ Skip⚫ Low

Decision: Keep current vector stores (OpenSearch, MongoDB, Qdrant, Azure, Vertex)


7. Graph Databases (for Graph RAG)​

DatabaseProsConsRecommendationPriority
Neo4j- Industry standard
- Excellent tooling
- Cypher query language
- LangChain integration
- Separate infrastructure
- Learning curve
βœ… Add for graph RAGπŸ”΅ Future
ArangoDB- Multi-model (graph + doc)
- Good performance
- Smaller community
- Less mature
⚠️ Consider as alternative⚫ Low
AWS Neptune- Managed service
- Gremlin/SPARQL
- Vendor lock-in
- Cost
⚠️ Cloud option⚫ Low
NetworkX- Python native
- Good for algorithms
- Free
- Not a database
- In-memory only
- Not scalable
βœ… Use for analysis🟒 Low

Decision: Add Neo4j when implementing Graph RAG (Phase 4)


8. Evaluation Frameworks​

FrameworkProsConsCurrent StatusRecommendation
RAGAS- Already integrated
- Comprehensive metrics
- Research-backed
- Some metrics slow
- LangChain dependency
βœ… Implementedβœ… Keep
TruLens- Observability focus
- Real-time evaluation
- Good dashboards
- Another tool to maintain
- Overlap with RAGAS
⚠️ Consider adding🟒 Low
Phoenix (Arize)- Production monitoring
- Drift detection
- Good for ML Ops
- External service
- Cost
⚠️ Evaluate⚫ Low
LangSmith (Current)- Already integrated
- Excellent tracing
- Dataset management
- Paid service
- LangChain-focused
βœ… Implementedβœ… Keep

Decision: Keep RAGAS + LangSmith, optionally add TruLens for additional observability


9. Document Processing​

LibraryProsConsCurrent StatusRecommendation
Unstructured- Already integrated
- Many file types
- Good extraction
- Can be slow
- Large dependency
βœ… Implementedβœ… Keep
LlamaParse- Excellent for PDFs
- Layout preservation
- LlamaIndex team
- External API
- Cost per document
⚠️ Consider for PDFs🟒 Low
PyPDF- Already integrated
- Fast
- Free
- Basic extraction
- No layout
βœ… Implementedβœ… Keep
Docling (IBM)- Research-grade
- Layout analysis
- Table extraction
- Newer
- Heavy dependencies
⚠️ Evaluate⚫ Low

Decision: Keep current stack (Unstructured + PyPDF + python-docx)


10. Multimodal Processing​

LibraryProsConsRecommendationPriority
OpenAI CLIP- State-of-the-art
- Pre-trained
- Easy to use
- Large model
- GPU recommended
βœ… Add for visionπŸ”΅ Future
OpenAI Whisper- Best audio transcription
- Open source
- Many languages
- GPU recommended
- Slow on CPU
βœ… Add for audioπŸ”΅ Future
LLaVA- Vision-language model
- Open source
- Good quality
- Large model
- Self-hosting needed
⚠️ Consider⚫ Low
ImageBind (Meta)- Multimodal embeddings
- 6 modalities
- Research-backed
- Large model
- Complex setup
⚠️ Evaluate⚫ Low

Decision: Add CLIP + Whisper when implementing multimodal (Phase 4)


11. Fine-Tuning & Training​

LibraryProsConsRecommendationPriority
OpenAI Fine-tuning API- Managed service
- No infrastructure
- GPT models
- Cost
- Less control
- Data privacy
βœ… Add for GPTπŸ”΅ Future
Hugging Face PEFT- Parameter-efficient
- LoRA, QLoRA
- Open source
- Requires GPU
- More complex
βœ… Add for localπŸ”΅ Future
Sentence Transformers- Already have
- Easy fine-tuning
- Good for embeddings
- Limited to sentence transformersβœ… Implementedβœ… Keep
Axolotl- Training framework
- Many models
- Good configs
- Complex setup
- GPU cluster needed
⚠️ Overkill⚫ Low

Decision: Use OpenAI API for GPT fine-tuning, PEFT for local models (Phase 5)


Immediate Additions (Priority 1-2)​

# Add to requirements.txt

# Multi-LLM Support
langchain-anthropic>=0.1.0
langchain-google-genai>=1.0.0
litellm>=1.30.0

# Prompt Compression (High ROI)
llmlingua>=0.2.0

# Enhanced Caching
gptcache>=0.1.43

# Semantic Routing
semantic-router>=0.0.23

Expected Impact:

  • Cost: -50% (compression + caching)
  • Latency: -30% (caching + routing)
  • Flexibility: Multiple LLM providers

Near-Term Additions (Priority 3-4)​

# Advanced Reranking
ragatouille>=0.0.8
colbert-ai>=0.2.0
cohere>=4.0.0 # Optional

# Prompt Engineering
dspy-ai>=2.4.0
langchainhub>=0.1.0
prompttools>=0.2.0

Expected Impact:

  • Quality: +15-20% (ColBERT + DSPy)
  • Maintainability: Better prompt management

Future Additions (Priority 5+)​

# Graph RAG
neo4j>=5.14.0
langchain-neo4j>=0.1.0
networkx>=3.2.0

# Multimodal
openai-whisper>=20231117

# Fine-Tuning
peft>=0.7.0
bitsandbytes>=0.41.0
accelerate>=0.25.0

# Optional Evaluation
trulens-eval>=0.20.0

Expected Impact:

  • Capabilities: Graph RAG, multimodal support
  • Quality: Fine-tuned models for domain

πŸ“ˆ ROI Analysis​

High ROI (Immediate)​

LibraryImplementation EffortExpected ImpactROI
LLMLingua🟒 Low (1-2 weeks)πŸ’° Cost -40-60%⭐⭐⭐⭐⭐
GPTCache🟒 Low (1-2 weeks)πŸ’° Cost -30-40%
⚑ Latency -40%
⭐⭐⭐⭐⭐
Multi-LLM🟑 Medium (2-3 weeks)πŸ’° Cost -20-30%
πŸ”„ Flexibility
⭐⭐⭐⭐
Semantic Router🟒 Low (1 week)⚑ Latency -20%⭐⭐⭐⭐

Medium ROI (Near-Term)​

LibraryImplementation EffortExpected ImpactROI
RAGatouille🟑 Medium (2-3 weeks)πŸ“Š Quality +15-20%⭐⭐⭐⭐
DSPyπŸ”΄ High (3-4 weeks)πŸ“Š Quality +15-25%⭐⭐⭐
LangChain Hub🟒 Low (1 week)πŸ”§ Maintainability⭐⭐⭐

Long-Term ROI (Future)​

LibraryImplementation EffortExpected ImpactROI
Neo4jπŸ”΄ High (4-6 weeks)πŸ†• New capabilities⭐⭐⭐
CLIP + WhisperπŸ”΄ High (4-6 weeks)πŸ†• Multimodal support⭐⭐⭐
PEFTπŸ”΄ High (6-8 weeks)πŸ“Š Quality +10-15%
πŸ’° Cost -30% (long-term)
⭐⭐⭐

πŸ” Detailed Library Analysis​

1. LLMLingua (Prompt Compression)​

What it does: Compresses prompts while maintaining quality

Technical Details:

  • Uses small LM to identify important tokens
  • Achieves 2-3x compression
  • 90% quality preservation

  • Supports long documents (LongLLMLingua)

Integration Points:

  • packages/rag/retrievers.py - Compress retrieved contexts
  • packages/conversational/dialogue_manager.py - Compress chat history
  • packages/agents/graphs.py - Compress prompts before LLM

Example:

from llmlingua import PromptCompressor

compressor = PromptCompressor()

# Original: 2000 tokens, $0.02
original_prompt = "..."

# Compressed: 800 tokens, $0.008
compressed = compressor.compress_prompt(
original_prompt,
target_token=800
)

Benchmarks:

  • Cost reduction: 40-60%
  • Quality drop: <5%
  • Latency increase: +50-100ms (compression time)
  • Net benefit: Massive cost savings

2. RAGatouille (ColBERT)​

What it does: State-of-the-art neural reranking

Technical Details:

  • Late interaction mechanism
  • Token-level similarity
  • Pre-trained on MS MARCO
  • Fine-tunable

Integration Points:

  • packages/rag/rerankers.py - Add ColBERTReranker
  • Multi-stage: cross-encoder (fast) β†’ ColBERT (accurate)

Example:

from ragatouille import RAGPretrainedModel

reranker = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")

results = reranker.rerank(
query="What are the side effects?",
documents=retrieved_docs,
k=5
)

Benchmarks:

  • Quality improvement: 10-20% (NDCG@5)
  • Latency: ~200ms per query
  • Model size: ~500MB
  • Net benefit: Significant quality boost

3. DSPy (Prompt Optimization)​

What it does: Automatic prompt engineering with LLMs

Technical Details:

  • Declarative programming for LLMs
  • Auto-optimizes prompts via examples
  • Supports few-shot, chain-of-thought
  • Modular components

Integration Points:

  • packages/prompts/ - New package
  • Optimize retrieval prompts
  • Optimize generation prompts
  • A/B test optimized vs manual

Example:

import dspy

class RAGSystem(dspy.Module):
def __init__(self):
self.retrieve = dspy.Retrieve(k=5)
self.generate = dspy.ChainOfThought("context, question -> answer")

def forward(self, question):
context = self.retrieve(question).passages
return self.generate(context=context, question=question)

# Optimize
optimizer = dspy.BootstrapFewShot(metric=answer_quality)
optimized_rag = optimizer.compile(RAGSystem(), trainset=examples)

Benchmarks:

  • Quality improvement: 15-25% (with optimization)
  • Setup time: 3-4 weeks
  • Optimization time: Hours per prompt
  • Net benefit: Systematic prompt improvement

4. GPTCache (Semantic Cache)​

What it does: Cache LLM responses with semantic similarity

Technical Details:

  • Multiple similarity functions
  • Multiple cache backends (Redis, SQLite, etc.)
  • Configurable TTL, eviction
  • Pre/post-processors

Integration Points:

  • packages/caching/semantic.py - Enhance existing cache
  • Replace or complement current implementation

Example:

from gptcache import cache
from gptcache.adapter import openai

cache.init()
cache.set_openai_key()

# Cached automatically
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[{"role": "user", "content": "What is RAG?"}]
)

# Cache hit on similar query
response2 = openai.ChatCompletion.create(
model="gpt-4",
messages=[{"role": "user", "content": "Explain RAG to me"}]
) # \<50ms, $0.00

Benchmarks:

  • Cache hit rate: 30-50% (depends on traffic)
  • Latency: <50ms on hit
  • Cost savings: 90%+ on cached queries
  • Net benefit: Huge cost and latency savings

5. LiteLLM (Multi-Provider Routing)​

What it does: Unified API for 100+ LLM providers

Technical Details:

  • OpenAI-compatible API
  • Built-in load balancing
  • Automatic retries
  • Cost tracking

Integration Points:

  • packages/agents/graphs.py - Replace ChatOpenAI
  • config/settings.py - Multi-provider config

Example:

from litellm import completion

# OpenAI
response = completion(
model="gpt-4",
messages=[{"role": "user", "content": "Hello"}]
)

# Anthropic (same API)
response = completion(
model="claude-3-opus-20240229",
messages=[{"role": "user", "content": "Hello"}]
)

# Automatic routing
response = completion(
model="gpt-4",
messages=[{"role": "user", "content": "Hello"}],
fallbacks=["claude-3-opus", "gpt-3.5-turbo"]
)

Benchmarks:

  • Setup time: 1-2 weeks
  • Latency overhead: <10ms
  • Cost optimization: 20-30% (via routing)
  • Net benefit: Flexibility and reliability

βœ… Implementation Checklist​

Phase 1: Quick Wins (Weeks 1-4)​

Week 1: Multi-LLM Support

  • Install langchain-anthropic, langchain-google-genai, litellm
  • Extend config/settings.py with provider configs
  • Create packages/llm/provider_factory.py
  • Update packages/agents/graphs.py to support providers
  • Test Anthropic Claude integration
  • Test Google Gemini integration
  • Update cost tracking for new providers
  • Document provider selection strategy

Week 2: Prompt Compression

  • Install llmlingua
  • Create packages/rag/prompt_compression.py
  • Integrate with retrieval pipeline
  • Test compression ratios (0.3, 0.5, 0.7)
  • Measure quality impact (RAGAS metrics)
  • A/B test compressed vs original
  • Deploy to staging
  • Monitor production metrics

Week 3: Enhanced Caching

  • Install gptcache
  • Benchmark against current semantic cache
  • Integrate GPTCache with Redis
  • Configure similarity thresholds
  • Test cache hit rates
  • Add cache analytics dashboard
  • Deploy to production
  • Monitor cost savings

Week 4: Query Routing

  • Install semantic-router
  • Create packages/rag/query_router.py
  • Implement query complexity classifier
  • Add routing logic (simpleβ†’cache, complexβ†’full retrieval)
  • Test routing accuracy
  • Add routing metrics
  • Deploy to production
  • Document routing strategies

Phase 2: Advanced Retrieval (Weeks 5-8)​

Week 5-6: ColBERT Reranking

  • Install ragatouille, colbert-ai
  • Create packages/rag/rerankers_advanced.py
  • Implement ColBERTReranker
  • Benchmark vs cross-encoder
  • Implement multi-stage reranking
  • Test on evaluation datasets
  • Measure quality improvement
  • Add ColBERT to A/B testing framework
  • Deploy to staging
  • Gradual rollout to production

Week 7: Integration & Optimization

  • Optimize reranking pipeline
  • Add caching for reranked results
  • Fine-tune reranking thresholds
  • Update documentation
  • Train team on new features

Week 8: Testing & Validation

  • End-to-end testing
  • Performance benchmarking
  • Quality evaluation (RAGAS)
  • Cost analysis
  • Production deployment

Phase 3: Prompt Engineering (Weeks 9-12)​

Week 9-10: DSPy Integration

  • Install dspy-ai
  • Create packages/prompts/ package
  • Implement DSPy modules for RAG
  • Create optimization pipeline
  • Collect training examples
  • Optimize retrieval prompts
  • Optimize generation prompts
  • Test optimized prompts

Week 11: Prompt Management

  • Install langchainhub, prompttools
  • Set up prompt versioning
  • Create prompt templates
  • A/B test prompts
  • Measure quality improvements
  • Document best practices

Week 12: Production Deployment

  • Deploy optimized prompts
  • Monitor quality metrics
  • Gradual rollout
  • Update documentation
  • Train team

πŸ“š Resources & References​

Official Documentation​

Research Papers​

  • ColBERT: "ColBERT: Efficient and Effective Passage Search via Contextualized Late Interaction over BERT"
  • DSPy: "DSPy: Compiling Declarative Language Model Calls into Self-Improving Pipelines"
  • LLMLingua: "LLMLingua: Compressing Prompts for Accelerated Inference of Large Language Models"
  • RAGAS: "RAGAS: Automated Evaluation of Retrieval Augmented Generation"

Community Resources​

  • LangChain Discord
  • DSPy GitHub Discussions
  • RAGatouille GitHub Issues

Document Version: 1.0
Last Updated: October 9, 2025
Status: βœ… Ready for Reference