Skip to main content

Phase 6 Implementation Guide - Analytics Dashboard

Phase: Week 9
Status: 🚀 Starting Implementation
Goal: Track conversations, monitor performance, gain insights


🎯 Phase 6 Overview

Objective: Build comprehensive analytics dashboard for chatbot monitoring and optimization

Deliverables:

  1. Conversation analytics engine
  2. Agent performance metrics
  3. Plotly Dash dashboard
  4. Real-time monitoring
  5. Report generation & export

Timeline: 1 week


📊 What We're Building

The Analytics Stack

┌─────────────────────────────────────┐
│ Plotly Dash Dashboard │ ← User-facing analytics
│ (Real-time charts & metrics) │
└─────────────┬───────────────────────┘

┌─────────────┴───────────────────────┐
│ Analytics Engine │ ← Processing & aggregation
│ (Metrics computation) │
└─────────────┬───────────────────────┘

┌─────────────┴───────────────────────┐
│ Data Collection │ ← Raw data
│ (Conversations, events, metrics) │
└─────────────┬───────────────────────┘

┌─────────────┴───────────────────────┐
│ Existing Systems │
│ (Memory, Logs, Metrics) ✅ │
└─────────────────────────────────────┘

📋 Components to Build

1. Conversation Analytics Engine

File: packages/analytics/conversation_analytics.py

Metrics to Track:

  • Volume Metrics

    • Total conversations
    • Messages per conversation
    • Active users
    • Peak usage times
  • Engagement Metrics

    • Conversation completion rate
    • Average conversation length
    • User retention
    • Return rate
  • Quality Metrics

    • User satisfaction (from feedback)
    • Response accuracy
    • Escalation rate
    • Error rate
  • Performance Metrics

    • Average response time
    • Processing time by component
    • Token usage
    • Cost per conversation

2. Agent Performance Metrics

File: packages/analytics/agent_metrics.py

Metrics to Track:

  • Success Metrics

    • Query success rate
    • Intent recognition accuracy
    • Entity extraction accuracy
    • Response relevance
  • Usage Metrics

    • Queries per agent
    • Tool usage frequency
    • Knowledge base hits
    • Popular queries
  • Efficiency Metrics

    • Average processing time
    • Steps per query
    • Cost per query
    • Token efficiency
  • Quality Metrics

    • User feedback scores
    • Escalation rate
    • Error rate
    • Retry rate

3. Plotly Dash Dashboard

File: apps/analytics_dashboard/app.py

Pages:

Page 1: Overview

  • Key metrics at a glance
  • Real-time conversation count
  • Active users
  • Response time trends

Page 2: Conversation Analytics

  • Conversation volume over time
  • Message distribution
  • Popular queries
  • User engagement

Page 3: Agent Performance

  • Agent comparison
  • Success rates
  • Processing times
  • Cost analysis

Page 4: User Insights

  • User segmentation
  • Engagement patterns
  • Satisfaction scores
  • Feedback analysis

Page 5: System Health

  • Error rates
  • Response times
  • Resource usage
  • Uptime monitoring

4. Real-Time Monitoring

Features:

  • Live conversation tracking
  • Real-time metrics updates
  • Alert system for anomalies
  • Performance degradation detection

5. Report Generation

Features:

  • Scheduled reports (daily, weekly, monthly)
  • Custom date ranges
  • Export to PDF/Excel
  • Email delivery
  • Customizable metrics

🛠️ Implementation Plan

Day 1-2: Analytics Engine

  • Build conversation analytics engine
  • Implement metric collectors
  • Create aggregation functions
  • Add time-series tracking

Day 3-4: Dashboard

  • Build Dash application
  • Create charts and visualizations
  • Add filtering and drill-down
  • Implement real-time updates

Day 5: Reports & Integration

  • Report generation
  • Export functionality
  • Integration with existing observability
  • Documentation

Let's build the analytics system! 🚀