Phase 6 Implementation Guide - Analytics Dashboard
Phase: Week 9
Status: 🚀 Starting Implementation
Goal: Track conversations, monitor performance, gain insights
🎯 Phase 6 Overview
Objective: Build comprehensive analytics dashboard for chatbot monitoring and optimization
Deliverables:
- Conversation analytics engine
- Agent performance metrics
- Plotly Dash dashboard
- Real-time monitoring
- Report generation & export
Timeline: 1 week
📊 What We're Building
The Analytics Stack
┌─────────────────────────────────────┐
│ Plotly Dash Dashboard │ ← User-facing analytics
│ (Real-time charts & metrics) │
└─────────────┬───────────────────────┘
│
┌─────────────┴───────────────────────┐
│ Analytics Engine │ ← Processing & aggregation
│ (Metrics computation) │
└─────────────┬───────────────────────┘
│
┌─────────────┴───────────────────────┐
│ Data Collection │ ← Raw data
│ (Conversations, events, metrics) │
└─────────────┬───────────────────────┘
│
┌─────────────┴───────────────────────┐
│ Existing Systems │
│ (Memory, Logs, Metrics) ✅ │
└─────────────────────────────────────┘
📋 Components to Build
1. Conversation Analytics Engine
File: packages/analytics/conversation_analytics.py
Metrics to Track:
-
Volume Metrics
- Total conversations
- Messages per conversation
- Active users
- Peak usage times
-
Engagement Metrics
- Conversation completion rate
- Average conversation length
- User retention
- Return rate
-
Quality Metrics
- User satisfaction (from feedback)
- Response accuracy
- Escalation rate
- Error rate
-
Performance Metrics
- Average response time
- Processing time by component
- Token usage
- Cost per conversation
2. Agent Performance Metrics
File: packages/analytics/agent_metrics.py
Metrics to Track:
-
Success Metrics
- Query success rate
- Intent recognition accuracy
- Entity extraction accuracy
- Response relevance
-
Usage Metrics
- Queries per agent
- Tool usage frequency
- Knowledge base hits
- Popular queries
-
Efficiency Metrics
- Average processing time
- Steps per query
- Cost per query
- Token efficiency
-
Quality Metrics
- User feedback scores
- Escalation rate
- Error rate
- Retry rate
3. Plotly Dash Dashboard
File: apps/analytics_dashboard/app.py
Pages:
Page 1: Overview
- Key metrics at a glance
- Real-time conversation count
- Active users
- Response time trends
Page 2: Conversation Analytics
- Conversation volume over time
- Message distribution
- Popular queries
- User engagement
Page 3: Agent Performance
- Agent comparison
- Success rates
- Processing times
- Cost analysis
Page 4: User Insights
- User segmentation
- Engagement patterns
- Satisfaction scores
- Feedback analysis
Page 5: System Health
- Error rates
- Response times
- Resource usage
- Uptime monitoring
4. Real-Time Monitoring
Features:
- Live conversation tracking
- Real-time metrics updates
- Alert system for anomalies
- Performance degradation detection
5. Report Generation
Features:
- Scheduled reports (daily, weekly, monthly)
- Custom date ranges
- Export to PDF/Excel
- Email delivery
- Customizable metrics
🛠️ Implementation Plan
Day 1-2: Analytics Engine
- Build conversation analytics engine
- Implement metric collectors
- Create aggregation functions
- Add time-series tracking
Day 3-4: Dashboard
- Build Dash application
- Create charts and visualizations
- Add filtering and drill-down
- Implement real-time updates
Day 5: Reports & Integration
- Report generation
- Export functionality
- Integration with existing observability
- Documentation
Let's build the analytics system! 🚀