Skip to main content

Phase 4 Implementation Guide - Voice Capabilities

Phase: Week 6
Status: 🚀 Starting Implementation
Goal: Add speech-to-text and text-to-speech capabilities


🎯 Phase 4 Overview

Objective: Enable voice-based interactions with the chatbot

Deliverables:

  1. Speech-to-text service (Whisper)
  2. Text-to-speech service (OpenAI TTS / Piper)
  3. Audio processing utilities
  4. Voice API endpoints
  5. Integration with existing UIs

Timeline: 1 week


📋 Tasks Breakdown

Day 1: Speech-to-Text

  • Create STT service with Whisper
  • Add local model fallback
  • Implement language detection
  • Add audio preprocessing
  • Test transcription accuracy

Day 2: Text-to-Speech

  • Create TTS service with OpenAI API
  • Add Piper TTS fallback
  • Implement voice selection
  • Add audio post-processing
  • Test speech quality

Day 3: Audio Processing

  • Audio format conversion
  • Noise reduction
  • Audio streaming
  • Chunk processing

Day 4: Voice API

  • Create voice endpoints
  • WebSocket streaming
  • File upload/download
  • Integration testing

Day 5: UI Integration & Testing

  • Add voice to Gradio
  • Add voice to Chainlit (optional)
  • Add voice to Telegram
  • End-to-end testing

🎤 Components to Build

1. Speech-to-Text Service

File: packages/voice/stt_service.py

Features:

  • OpenAI Whisper API integration
  • Local Whisper model fallback
  • Multiple audio formats (WAV, MP3, OGG)
  • Language detection
  • Timestamp alignment
  • Confidence scores

API:

from packages.voice import STTService

stt = STTService()
result = await stt.transcribe(audio_file="recording.mp3")
print(result.text)

2. Text-to-Speech Service

File: packages/voice/tts_service.py

Features:

  • OpenAI TTS API (primary)
  • Piper TTS (offline fallback)
  • Multiple voices/languages
  • Speed/pitch control
  • Audio format options

API:

from packages.voice import TTSService

tts = TTSService()
audio_file = await tts.synthesize(
text="Hello, how can I help you?",
voice="alloy"
)

3. Audio Processing

File: packages/voice/audio_processor.py

Features:

  • Format conversion
  • Resampling
  • Noise reduction
  • Volume normalization
  • Audio chunking

4. Voice API Endpoints

File: apps/api/voice_api.py

Endpoints:

POST /voice/transcribe          # Upload audio, get text
POST /voice/synthesize # Send text, get audio
WS /voice/stream # Streaming audio
GET /voice/languages # Supported languages
GET /voice/voices # Available voices

🛠️ Dependencies

Install Voice Libraries

# Speech-to-Text
pip install openai-whisper>=20231117
pip install openai>=1.12.0 # For API

# Text-to-Speech
pip install piper-tts>=1.2.0
pip install TTS>=0.22.0 # Coqui TTS (alternative)

# Audio Processing
pip install pydub>=0.25.1
pip install librosa>=0.10.0
pip install soundfile>=0.12.1

# Optional: For advanced audio
pip install noisereduce>=3.0.0
pip install webrtcvad>=2.0.10

📊 Voice Providers Comparison

FeatureOpenAI Whisper APILocal WhisperGoogle STTAWS Transcribe
Quality⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
Speed⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
Cost$0.006/min🆓 Free$0.006/15s$0.024/min
Privacy⚠️ Cloud✅ Local⚠️ Cloud⚠️ Cloud
Languages9999125+100+
Offline

Decision: OpenAI Whisper API (primary) + Local Whisper (fallback/privacy)


FeatureOpenAI TTSPiper TTSGoogle TTSAWS Polly
Quality⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
Natural⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
Speed⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
Cost$15/1M chars🆓 Free$4/1M chars$4/1M chars
Privacy⚠️ Cloud✅ Local⚠️ Cloud⚠️ Cloud
Voices650+200+60+
Offline

Decision: OpenAI TTS (primary) + Piper TTS (fallback/offline)


🚀 Implementation

Let's build the voice components! Starting with STT...