Skip to main content

Security Monitoring

Overview

The Security Monitoring system provides real-time visibility into security threats, attack patterns, and system performance. This comprehensive monitoring solution helps security teams detect, analyze, and respond to threats effectively.

Security Dashboard

Real-Time Metrics

The security dashboard displays key performance indicators:

  • Total Queries: Number of queries processed
  • Blocked Queries: Number of queries blocked by security
  • Block Rate: Percentage of queries blocked
  • Injection Attempts: Number of injection attacks detected
  • False Positives: Legitimate queries incorrectly blocked

Threat Distribution

Visual representation of threat levels:

  • Safe: No security concerns
  • Low: Minor security patterns
  • Medium: Moderate threats
  • High: Significant threats
  • Critical: Severe threats requiring immediate action

Attack Pattern Analysis

Identification of common attack patterns:

  • Direct injection attempts
  • Role manipulation attacks
  • Context poisoning attempts
  • Jailbreak attempts
  • Social engineering attacks

Monitoring Components

1. Security Event Logging

from packages.rag.input_sanitization import SecurityEvent

# Log security event
event = SecurityEvent(
timestamp=time.time(),
user_id="user123",
session_id="session456",
query="malicious query",
threat_level=ThreatLevel.HIGH,
injection_type=InjectionType.DIRECT_INJECTION,
confidence=0.85,
detected_patterns=["ignore instructions"],
sanitized_query="sanitized query",
action_taken="BLOCK_QUERY",
risk_score=0.5
)

monitor.log_event(event)

2. User Risk Scoring

# Get user risk score
risk_score = monitor.get_user_risk_score("user123")

# Update risk score based on behavior
if threat_detected:
monitor.update_user_risk_score("user123", risk_increment)

3. Attack Pattern Detection

# Analyze attack patterns
patterns = monitor.get_attack_patterns()

# Get trending patterns
trending = monitor.get_trending_patterns(hours=24)

Alert System

Alert Types

High-Risk Users

if len(high_risk_users) > threshold:
create_alert(
severity="medium",
title="Multiple High-Risk Users Detected",
description=f"Found {len(high_risk_users)} users with elevated risk scores"
)

Injection Attempt Spikes

if injection_attempts > threshold:
create_alert(
severity="high",
title="Injection Attempt Spike Detected",
description=f"Detected {injection_attempts} injection attempts in the last hour"
)

Critical Threats

if critical_threats > threshold:
create_alert(
severity="critical",
title="Critical Security Threats Detected",
description=f"Detected {critical_threats} critical threats in the last hour"
)

Alert Configuration

# Configure alert thresholds
alert_thresholds = {
'high_risk_users': 5,
'injection_attempts_per_hour': 10,
'critical_threats_per_hour': 3,
'false_positive_rate': 0.1
}

Notification Channels

  • Email: Direct email notifications
  • Webhook: HTTP webhook notifications
  • Slack: Slack channel notifications
  • Dashboard: Real-time dashboard alerts

Metrics and Analytics

Key Performance Indicators

Detection Accuracy

def calculate_detection_accuracy():
total_queries = get_total_queries()
correctly_detected = get_correctly_detected()
return correctly_detected / total_queries

False Positive Rate

def calculate_false_positive_rate():
total_blocked = get_total_blocked()
false_positives = get_false_positives()
return false_positives / total_blocked

Response Time

def calculate_response_time():
response_times = get_response_times()
return statistics.mean(response_times)

Trend Analysis

def analyze_query_volume_trends():
hourly_data = get_hourly_query_data(days=7)
return calculate_trend(hourly_data)

Attack Pattern Evolution

def analyze_attack_evolution():
patterns = get_attack_patterns_by_time()
return identify_emerging_patterns(patterns)

User Behavior Analysis

def analyze_user_behavior():
user_activities = get_user_activities()
return identify_anomalous_behavior(user_activities)

Dashboard Features

Real-Time Updates

The dashboard automatically refreshes every 30 seconds to show:

  • Current security metrics
  • Recent security events
  • Active alerts
  • User risk scores

Interactive Charts

Query Volume Chart

  • Total queries over time
  • Blocked queries over time
  • Trend analysis

Threat Distribution Pie Chart

  • Distribution of threat levels
  • Percentage breakdown
  • Color-coded segments

Attack Patterns Bar Chart

  • Top attack patterns
  • Pattern frequency
  • Trend indicators
  • Filter by time range
  • Filter by user ID
  • Filter by threat level
  • Search specific patterns

Monitoring Best Practices

1. Continuous Monitoring

  • Monitor 24/7 for security events
  • Set up automated alerts
  • Regular review of metrics
  • Proactive threat hunting

2. Performance Optimization

  • Monitor response times
  • Track resource usage
  • Optimize detection rules
  • Scale as needed

3. Data Retention

  • Retain security logs for compliance
  • Archive historical data
  • Implement data lifecycle management
  • Ensure data privacy

4. Alert Tuning

  • Adjust alert thresholds
  • Reduce false positives
  • Implement alert correlation
  • Regular alert review

Integration

SIEM Integration

def send_to_siem(event):
siem_data = {
'timestamp': event.timestamp,
'user_id': event.user_id,
'threat_level': event.threat_level.value,
'query': event.query,
'action_taken': event.action_taken
}

siem_client.send_event(siem_data)

Log Aggregation

def aggregate_logs():
logs = get_security_logs()
aggregated = aggregate_by_pattern(logs)
return aggregated

API Integration

# Get dashboard data via API
@app.route('/api/dashboard-data')
def get_dashboard_data():
return jsonify(security_system.get_security_dashboard_data())

# Get security charts via API
@app.route('/api/security-charts')
def get_security_charts():
return jsonify(dashboard.get_security_charts())

Troubleshooting

Common Issues

High False Positive Rate

  • Adjust detection thresholds
  • Refine detection patterns
  • Implement user feedback
  • Retrain ML models

Missing Threats

  • Lower detection thresholds
  • Add new detection patterns
  • Update ML models
  • Implement behavioral analysis

Performance Issues

  • Optimize detection rules
  • Implement caching
  • Use faster inference
  • Scale resources

Alert Fatigue

  • Tune alert thresholds
  • Implement alert correlation
  • Use alert prioritization
  • Regular alert review

Monitoring Health

System Health Checks

def check_system_health():
checks = {
'detection_accuracy': check_detection_accuracy(),
'response_time': check_response_time(),
'false_positive_rate': check_false_positive_rate(),
'system_uptime': check_system_uptime()
}

return all(checks.values())

Performance Monitoring

def monitor_performance():
metrics = {
'cpu_usage': get_cpu_usage(),
'memory_usage': get_memory_usage(),
'disk_usage': get_disk_usage(),
'network_usage': get_network_usage()
}

return metrics

Compliance and Reporting

Security Reports

Generate comprehensive security reports:

  • Executive summary
  • Threat analysis
  • Performance metrics
  • Recommendations

Compliance Monitoring

Track compliance with:

  • GDPR requirements
  • SOC 2 controls
  • ISO 27001 standards
  • Industry regulations

Audit Trail

Maintain detailed audit trails:

  • All security events
  • User actions
  • System changes
  • Access logs