Security Monitoring
Overview
The Security Monitoring system provides real-time visibility into security threats, attack patterns, and system performance. This comprehensive monitoring solution helps security teams detect, analyze, and respond to threats effectively.
Security Dashboard
Real-Time Metrics
The security dashboard displays key performance indicators:
- Total Queries: Number of queries processed
- Blocked Queries: Number of queries blocked by security
- Block Rate: Percentage of queries blocked
- Injection Attempts: Number of injection attacks detected
- False Positives: Legitimate queries incorrectly blocked
Threat Distribution
Visual representation of threat levels:
- Safe: No security concerns
- Low: Minor security patterns
- Medium: Moderate threats
- High: Significant threats
- Critical: Severe threats requiring immediate action
Attack Pattern Analysis
Identification of common attack patterns:
- Direct injection attempts
- Role manipulation attacks
- Context poisoning attempts
- Jailbreak attempts
- Social engineering attacks
Monitoring Components
1. Security Event Logging
from packages.rag.input_sanitization import SecurityEvent
# Log security event
event = SecurityEvent(
timestamp=time.time(),
user_id="user123",
session_id="session456",
query="malicious query",
threat_level=ThreatLevel.HIGH,
injection_type=InjectionType.DIRECT_INJECTION,
confidence=0.85,
detected_patterns=["ignore instructions"],
sanitized_query="sanitized query",
action_taken="BLOCK_QUERY",
risk_score=0.5
)
monitor.log_event(event)
2. User Risk Scoring
# Get user risk score
risk_score = monitor.get_user_risk_score("user123")
# Update risk score based on behavior
if threat_detected:
monitor.update_user_risk_score("user123", risk_increment)
3. Attack Pattern Detection
# Analyze attack patterns
patterns = monitor.get_attack_patterns()
# Get trending patterns
trending = monitor.get_trending_patterns(hours=24)
Alert System
Alert Types
High-Risk Users
if len(high_risk_users) > threshold:
create_alert(
severity="medium",
title="Multiple High-Risk Users Detected",
description=f"Found {len(high_risk_users)} users with elevated risk scores"
)
Injection Attempt Spikes
if injection_attempts > threshold:
create_alert(
severity="high",
title="Injection Attempt Spike Detected",
description=f"Detected {injection_attempts} injection attempts in the last hour"
)
Critical Threats
if critical_threats > threshold:
create_alert(
severity="critical",
title="Critical Security Threats Detected",
description=f"Detected {critical_threats} critical threats in the last hour"
)
Alert Configuration
# Configure alert thresholds
alert_thresholds = {
'high_risk_users': 5,
'injection_attempts_per_hour': 10,
'critical_threats_per_hour': 3,
'false_positive_rate': 0.1
}
Notification Channels
- Email: Direct email notifications
- Webhook: HTTP webhook notifications
- Slack: Slack channel notifications
- Dashboard: Real-time dashboard alerts
Metrics and Analytics
Key Performance Indicators
Detection Accuracy
def calculate_detection_accuracy():
total_queries = get_total_queries()
correctly_detected = get_correctly_detected()
return correctly_detected / total_queries
False Positive Rate
def calculate_false_positive_rate():
total_blocked = get_total_blocked()
false_positives = get_false_positives()
return false_positives / total_blocked
Response Time
def calculate_response_time():
response_times = get_response_times()
return statistics.mean(response_times)
Trend Analysis
Query Volume Trends
def analyze_query_volume_trends():
hourly_data = get_hourly_query_data(days=7)
return calculate_trend(hourly_data)
Attack Pattern Evolution
def analyze_attack_evolution():
patterns = get_attack_patterns_by_time()
return identify_emerging_patterns(patterns)
User Behavior Analysis
def analyze_user_behavior():
user_activities = get_user_activities()
return identify_anomalous_behavior(user_activities)
Dashboard Features
Real-Time Updates
The dashboard automatically refreshes every 30 seconds to show:
- Current security metrics
- Recent security events
- Active alerts
- User risk scores
Interactive Charts
Query Volume Chart
- Total queries over time
- Blocked queries over time
- Trend analysis
Threat Distribution Pie Chart
- Distribution of threat levels
- Percentage breakdown
- Color-coded segments
Attack Patterns Bar Chart
- Top attack patterns
- Pattern frequency
- Trend indicators
Filtering and Search
- Filter by time range
- Filter by user ID
- Filter by threat level
- Search specific patterns
Monitoring Best Practices
1. Continuous Monitoring
- Monitor 24/7 for security events
- Set up automated alerts
- Regular review of metrics
- Proactive threat hunting
2. Performance Optimization
- Monitor response times
- Track resource usage
- Optimize detection rules
- Scale as needed
3. Data Retention
- Retain security logs for compliance
- Archive historical data
- Implement data lifecycle management
- Ensure data privacy
4. Alert Tuning
- Adjust alert thresholds
- Reduce false positives
- Implement alert correlation
- Regular alert review
Integration
SIEM Integration
def send_to_siem(event):
siem_data = {
'timestamp': event.timestamp,
'user_id': event.user_id,
'threat_level': event.threat_level.value,
'query': event.query,
'action_taken': event.action_taken
}
siem_client.send_event(siem_data)
Log Aggregation
def aggregate_logs():
logs = get_security_logs()
aggregated = aggregate_by_pattern(logs)
return aggregated
API Integration
# Get dashboard data via API
@app.route('/api/dashboard-data')
def get_dashboard_data():
return jsonify(security_system.get_security_dashboard_data())
# Get security charts via API
@app.route('/api/security-charts')
def get_security_charts():
return jsonify(dashboard.get_security_charts())
Troubleshooting
Common Issues
High False Positive Rate
- Adjust detection thresholds
- Refine detection patterns
- Implement user feedback
- Retrain ML models
Missing Threats
- Lower detection thresholds
- Add new detection patterns
- Update ML models
- Implement behavioral analysis
Performance Issues
- Optimize detection rules
- Implement caching
- Use faster inference
- Scale resources
Alert Fatigue
- Tune alert thresholds
- Implement alert correlation
- Use alert prioritization
- Regular alert review
Monitoring Health
System Health Checks
def check_system_health():
checks = {
'detection_accuracy': check_detection_accuracy(),
'response_time': check_response_time(),
'false_positive_rate': check_false_positive_rate(),
'system_uptime': check_system_uptime()
}
return all(checks.values())
Performance Monitoring
def monitor_performance():
metrics = {
'cpu_usage': get_cpu_usage(),
'memory_usage': get_memory_usage(),
'disk_usage': get_disk_usage(),
'network_usage': get_network_usage()
}
return metrics
Compliance and Reporting
Security Reports
Generate comprehensive security reports:
- Executive summary
- Threat analysis
- Performance metrics
- Recommendations
Compliance Monitoring
Track compliance with:
- GDPR requirements
- SOC 2 controls
- ISO 27001 standards
- Industry regulations
Audit Trail
Maintain detailed audit trails:
- All security events
- User actions
- System changes
- Access logs