Chatbot & AI Agent Creation - Comprehensive Implementation Plan
Status: Planning Phase
Date: October 9, 2025
Version: 1.0
๐ฏ Executive Summaryโ
This document outlines the comprehensive plan for implementing a Chatbot & AI Agent Creation feature in RecoAgent. The plan leverages our existing infrastructure and integrates carefully selected open-source libraries to create a production-ready, enterprise-grade chatbot platform without duplicating effort.
Key Objectivesโ
- Build a Multi-Modal Chatbot Interface - Support text, voice, and rich media interactions
- Enable Custom Agent Creation - Allow users to create, configure, and deploy specialized agents
- Provide Conversational UI Components - Reusable UI components for chat interfaces
- Support Multi-Channel Deployment - Web, mobile, Slack, Teams, WhatsApp, etc.
- Enterprise Features - Analytics, monitoring, A/B testing, and compliance
๐ Current Infrastructure Assessmentโ
โ What We Already Haveโ
1. Agent Framework (LangGraph-based)โ
Location: packages/agents/
-
graphs.py
: Complete LangGraph-based agent state machine- RAG workflow (retrieve โ rerank โ plan โ act โ answer)
- Tool integration via ToolNode
- Error handling and escalation
- Cost tracking and latency monitoring
-
tools.py
: Extensible tool system- RetrievalTool (hybrid retrieval)
- RerankingTool (cross-encoder reranking)
- WebSearchTool (external search)
- EscalateTool (human handoff)
- ToolRegistry for managing tools
-
policies.py
: Comprehensive safety and governance- SafetyPolicy (input/output filtering, PII detection)
- ToolPolicy (usage limits, allowed tools)
- EscalationPolicy (human handoff triggers)
- RateLimitPolicy (burst protection)
- PolicyEngine (multi-policy evaluation)
-
middleware.py
: Production middleware- GuardrailsMiddleware (safety filtering)
- CostTrackingMiddleware (budget enforcement)
- LatencyTrackingMiddleware (performance monitoring)
- AuthenticationMiddleware (user auth)
-
callbacks.py
: Observability and monitoring- AgentCallbackHandler (base monitoring)
- MetricsCallbackHandler (detailed metrics)
- LangSmithCallbackHandler (LangSmith integration)
- CustomCallbackHandler (extensible hooks)
2. Specialized Agentsโ
Location: packages/agents/
-
medical_agent.py
: Medical knowledge assistant- Query expansion with medical terminology
- Faceted search for clinical guidelines
- Safety validation (contraindications, drug interactions)
- Patient context awareness
-
compliance_agent.py
: Financial compliance assistant- Regulatory terminology and authority weighting
- Escalation logic for complex queries
- Audit logging
- Legal disclaimers
-
manufacturing_agent.py
: Manufacturing process assistant -
research_lab_agent.py
: Research lab knowledge management
3. Memory & Conversation Managementโ
Location: recoagent/memory/
Features:
- SQLite-based persistence with connection pooling
- Thread-based session isolation
- Multi-type search (exact, fuzzy, semantic)
- Memory optimization and cleanup strategies
- LangGraph state compatibility
- Multi-user support with role-based responses
Components:
state/conversation_state.py
: Rich conversation statesession/thread_manager.py
: Session lifecycle managementpersistence/async_sqlite_saver.py
: High-performance persistencesession/history_api.py
: Search and analyticscleanup/memory_optimizer.py
: Cleanup strategies
4. RAG Systemโ
Location: packages/rag/
- Hybrid retrieval (BM25 + vector search)
- Cross-encoder reranking
- Query expansion
- Document search and summarization
- Faceted search
- Multiple specialized retrieval pipelines
5. Observability Stackโ
Location: packages/observability/
- Structured logging (structlog)
- Metrics collection (Prometheus)
- Distributed tracing (Jaeger integration)
- LangSmith integration
- Cost and performance tracking
6. API Infrastructureโ
Location: apps/api/
- FastAPI-based REST API
- JWT authentication
- Rate limiting (Redis-based)
- CORS and security headers
- Health checks
- PostgreSQL for persistence
- Kubernetes deployment configs
7. Dependencies Already Installedโ
From requirements.txt
:
langchain>=0.1.0
langgraph>=0.0.40
langsmith>=0.0.80
openai>=1.12.0
fastapi>=0.104.0
sentence-transformers>=2.2.2
transformers>=4.36.0
nemoguardrails>=0.7.0
structlog>=23.2.0
redis>=5.0.0
๐ Gap Analysis & Requirementsโ
What We Need to Buildโ
1. Chatbot UI Componentsโ
- React-based chat interface
- Message rendering (text, code, tables, charts)
- Rich media support (images, files, voice)
- Typing indicators and avatars
- Conversation history UI
- Export and share functionality
2. Agent Builder Interfaceโ
- Visual agent creation workflow
- Tool selection and configuration
- Prompt template editor
- Policy configuration UI
- Testing and preview mode
3. Multi-Channel Adaptersโ
- Slack integration
- Microsoft Teams integration
- WhatsApp Business API
- Telegram bot
- Discord bot
- Generic webhook adapter
4. Voice Capabilitiesโ
- Speech-to-text (STT)
- Text-to-speech (TTS)
- Audio streaming
- Language detection
5. Advanced Conversation Featuresโ
- Intent recognition
- Entity extraction
- Dialogue flow management
- Context switching
- Clarification questions
- Follow-up suggestions
6. Analytics & Insightsโ
- Conversation analytics dashboard
- User engagement metrics
- Agent performance metrics
- A/B testing framework
- Feedback collection
๐ Recommended Open-Source Librariesโ
Category 1: Conversational AI Frameworksโ
1. Rasa (Dialogue Management)โ
Purpose: Natural language understanding and dialogue management
Why: Industry-standard for intent recognition and dialogue flows
Integration Point: Enhance conversation flow management
Features We'll Use:
- Intent classification
- Entity extraction
- Dialogue policies
- Custom actions
- Form filling
Installation:
pip install rasa>=3.6.0
Integration Strategy:
- Use Rasa NLU for intent/entity extraction
- Leverage Rasa Core for dialogue management
- Integrate with our existing LangGraph agents as a pre-processing step
- Keep our LangGraph orchestration as the main agent brain
2. Haystack (NLP Pipeline)โ
Purpose: End-to-end NLP pipelines
Why: Excellent for question answering and document search
Integration Point: Enhance our RAG pipeline
Features We'll Use:
- Document stores
- Retrievers
- Readers
- Generators
- Pipeline composition
Installation:
pip install farm-haystack>=1.22.0
Integration Strategy:
- Use Haystack's readers for extractive QA
- Leverage document processors
- Integrate with our existing retrievers
Category 2: Frontend & UI Librariesโ
3. Streamlit (Rapid Prototyping)โ
Purpose: Quick chatbot UI prototyping
Why: Fast development, Python-native, great for demos
Integration Point: Demo applications and internal tools
Features We'll Use:
- Chat UI components
- Session state management
- File upload/download
- Charts and visualizations
Installation:
pip install streamlit>=1.28.0
streamlit-chat>=0.1.1
Use Cases:
- Internal testing interfaces
- Demo applications
- Admin dashboards
4. Gradio (ML Model Interfaces)โ
Purpose: Machine learning model interfaces
Why: Easy-to-use, supports sharing, excellent for ML demos
Integration Point: Agent testing and demos
Features We'll Use:
- Chat interface
- Audio input/output
- File upload
- API generation
Installation:
pip install gradio>=4.0.0
Use Cases:
- Model testing interfaces
- Public demos
- Stakeholder presentations
5. Chainlit (Production Chatbot UI)โ
Purpose: Production-ready chatbot UI
Why: Built specifically for LangChain/LangGraph applications
Integration Point: Main chatbot interface
Features We'll Use:
- Multi-turn conversations
- Streaming responses
- File attachments
- Authentication
- Chat history
- Feedback collection
- Custom actions
Installation:
pip install chainlit>=1.0.0
Integration Strategy:
- Primary chatbot UI for production
- Direct integration with LangGraph agents
- Custom branding and theming
- Deploy as standalone service
6. React + TypeScript (Custom Web UI)โ
Purpose: Custom-branded chatbot interface
Why: Full control, enterprise-grade, scalable
Integration Point: Client-facing chatbot
Recommended Stack:
{
"@chatscope/chat-ui-kit-react": "^2.0.0",
"react": "^18.2.0",
"react-dom": "^18.2.0",
"typescript": "^5.2.0",
"axios": "^1.5.0",
"socket.io-client": "^4.7.0",
"react-query": "^3.39.0"
}
Components to Build:
- ChatWindow
- MessageList
- MessageInput
- TypingIndicator
- FileUpload
- VoiceInput
- FeedbackWidget
Category 3: Natural Language Processingโ
7. spaCy (Entity Extraction)โ
Purpose: Advanced NLP and entity recognition
Why: Fast, accurate, production-ready
Integration Point: Pre-processing layer
Installation:
pip install spacy>=3.7.0
python -m spacy download en_core_web_lg
Use Cases:
- Named entity recognition
- Part-of-speech tagging
- Dependency parsing
- Custom entity extraction
8. NLTK (Text Processing)โ
Purpose: Text processing and analysis
Why: Comprehensive toolkit for NLP tasks
Integration Point: Text preprocessing
Installation:
pip install nltk>=3.8.1
Use Cases:
- Tokenization
- Stemming/lemmatization
- Sentiment analysis
- Text classification
Category 4: Multi-Channel Integrationโ
9. Slack SDKโ
Purpose: Slack bot integration
Why: Official SDK, well-maintained
Installation:
pip install slack-sdk>=3.26.0
slack-bolt>=1.18.0
10. Microsoft Bot Framework SDKโ
Purpose: Teams integration
Why: Official Microsoft SDK
Installation:
pip install botbuilder-core>=4.16.0
botbuilder-schema>=4.16.0
11. python-telegram-botโ
Purpose: Telegram bot integration
Why: Most popular Python library for Telegram
Installation:
pip install python-telegram-bot>=20.7
Category 5: Voice & Speechโ
12. Whisper (Speech-to-Text)โ
Purpose: Speech recognition
Why: State-of-the-art, multilingual, open-source
Installation:
pip install openai-whisper>=20231117
Integration Strategy:
- Use OpenAI Whisper API for production
- Use local Whisper model for privacy-sensitive scenarios
13. Piper TTS (Text-to-Speech)โ
Purpose: Neural text-to-speech
Why: Fast, high-quality, offline-capable
Installation:
pip install piper-tts>=1.2.0
Alternative: Use OpenAI TTS API for production
Category 6: Analytics & Monitoringโ
14. Plotly Dash (Analytics Dashboard)โ
Purpose: Interactive analytics dashboards
Why: Python-native, interactive, production-ready
Installation:
pip install dash>=2.14.0
plotly>=5.18.0
Use Cases:
- Conversation analytics
- Agent performance metrics
- User engagement tracking
Category 7: Testing & Evaluationโ
15. Pytest & Testing Toolsโ
Already Installed
Additional testing libraries:
pip install pytest-asyncio>=0.21.0
pytest-mock>=3.12.0
httpx>=0.25.0 # For async API testing
16. Locust (Load Testing)โ
Purpose: Load testing for chatbot APIs
Why: Python-native, scalable, great for async testing
Installation:
pip install locust>=2.17.0
Category 8: Advanced Featuresโ
17. LangChain Community (Extended Tools)โ
Purpose: Additional LangChain integrations
Why: Community-contributed tools and integrations
Installation:
pip install langchain-community>=0.0.10
Features:
- Additional vector stores
- More tools
- Extended retrievers
18. AutoGen (Multi-Agent Collaboration)โ
Purpose: Multi-agent conversations
Why: Enable agent-to-agent communication
Installation:
pip install pyautogen>=0.2.0
Use Cases:
- Complex problem-solving with multiple agents
- Agent collaboration workflows
- Hierarchical agent structures
๐๏ธ Proposed Architectureโ
System Architectureโ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Client Layer โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ Web UI โ Mobile โ Slack โ Teams โ WhatsApp โ
โ (React/ โ App โ Bot โ Bot โ Bot โ
โ Chainlit) โ โ โ โ โ
โโโโโโโโโโโโโโโฌโโโโโโโโโโโโดโโโโโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโโโโ
โ
โผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ API Gateway (FastAPI) โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ โข Authentication (JWT) โ
โ โข Rate Limiting (Redis) โ
โ โข Request Routing โ
โ โข WebSocket Support โ
โโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
โผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Conversation Orchestration Layer โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ โ
โ โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โ
โ โ Intent โโโโโถโ Dialogue โโ โโโถโ Agent โ โ
โ โ Recognition โ โ Management โ โ Orchestrator โ โ
โ โ (Rasa) โ โ (Rasa) โ โ (LangGraph) โ โ
โ โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โ
โ โ โ โ โ
โ โผ โผ โผ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ Entity Extraction (spaCy + NLTK) โ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
โผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Agent Layer (LangGraph) โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ โ
โ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โ
โ โ Medical โ โComplianceโ โ IT โ โ Custom โ โ
โ โ Agent โ โ Agent โ โ Support โ โ Agents โ โ
โ โโโโโโฌโโโโโโ โโโโโโฌโโโโโโ โโโโโโฌโโโโโโ โโโโโโฌโโโโโโ โ
โ โ โ โ โ โ
โ โโโโโโโโโโโโโโโดโโโโโโโโโโโโโโดโโโโโโโโโโโโโโ โ
โ โ โ
โ โโโโโโโโโโโโผโโโโโโโโโโโ โ
โ โ Tool Registry โ โ
โ โ (Retrieval, Web, โ โ
โ โ Escalation, etc) โ โ
โ โโโโโโโโโโโโฌโโโโโโโโโโโ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
โผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โโโโโโโโ
โ Knowledge & Data Layer โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ โ
โ โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โ
โ โ RAG โ โ Memory โ โ Vector โ โ
โ โ Pipeline โ โ System โ โ Store โ โ
โ โ (Haystack) โ โ (SQLite) โ โ(OpenSearch) โ โ
โ โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
โผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Observability & Monitoring Layer โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ โ
โ โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โ
โ โ LangSmith โ โ Prometheus/ โ โ Dash โ โ
โ โ Tracing โ โ Grafana โ โ Analytics โ โ
โ โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ
Data Flowโ
User Input
โ
โผ
โโโโโโโโโโโโโโโโโโโโโโโโ
โ 1. Channel Adapter โ (Slack, Web, etc)
โโโโโโโโโโโโฌโโโโโโโโโโโโ
โ
โผ
โโโโโโโโโโโโโโโโโโโโโโโโ
โ 2. API Gateway โ (Auth, Rate Limit)
โโโโโโโโโโโโฌโโโ โโโโโโโโโ
โ
โผ
โโโโโโโโโโโโโโโโโโโโโโโโ
โ 3. Intent Detection โ (Rasa NLU)
โ Entity Extract โ (spaCy)
โโโโโโโโโโโโฌโโโโโโโโโโโโ
โ
โผ
โโโโโโโโโโโโโโโโโโโโโโโโ
โ 4. Dialogue Manager โ (Rasa Core)
โ Context Switch โ
โโโโโโโโโโโโฌโโโโโโโโโโโโ
โ
โผ
โโโโโโโโโโโโโโโโโโโโโโโโ
โ 5. Agent Selection โ (Route to correct agent)
โโโโโโโโโโโโฌโโโโโโโโโโโโ
โ
โผ
โโโโโโโโโโโโโโโโโโโโโโโโ
โ 6. LangGraph Agent โ (State machine execution)
โ - Retrieve โ
โ - Rerank โ
โ - Plan โ
โ - Act โ
โ - Answer โ
โโโโโโโโโโโโฌโโโโโโโโโโโโ
โ
โผ
โโโโโโโโโโโโโโโโโโโโโโโโ
โ 7. Safety Policies โ (Guardrails)
โโโโโโโโโโโโฌโโโโโโโโโโโโ
โ
โผ
โโโโโโโโโโโโโโโโโโโโโโโโ
โ 8. Response Format โ (Text, Voice, Rich)
โโโโโโโโโโโโฌโโโโโโโโโโโโ
โ
โผ
โโโโโโโโโโโโโโโโโโโโโโโโ
โ 9. Memory Update โ (Conversation history)
โโโโโโโโโโโโฌโโโโโโโโโโโโ
โ
โผ
โโโโโโโโโโโโโโโโโโโโโโโโ
โ 10. Channel Adapter โ (Send response)
โโโโโโโโโโโโฌโโโโโโโโโโโโ
โ
โผ
User Response
๐ฆ Component Breakdownโ
Phase 1: Core Chatbot Infrastructure (Weeks 1-2)โ
Task 1.1: Install and Configure Dependenciesโ
# Conversational AI
pip install rasa>=3.6.0
pip install farm-haystack>=1.22.0
# UI Components
pip install streamlit>=1.28.0 streamlit-chat>=0.1.1
pip install gradio>=4.0.0
pip install chainlit>=1.0.0
# NLP
pip install spacy>=3.7.0
python -m spacy download en_core_web_lg
# Multi-channel
pip install slack-sdk>=3.26.0 slack-bolt>=1.18.0
pip install python-telegram-bot>=20.7
pip install botbuilder-core>=4.16.0
# Voice
pip install openai-whisper>=20231117
pip install piper-tts>=1.2.0
# Analytics
pip install dash>=2.14.0 plotly>=5.18.0
# Testing
pip install pytest-asyncio>=0.21.0
pip install locust>=2.17.0
# Advanced
pip install langchain-community>=0.0.10
pip install pyautogen>=0.2.0
Task 1.2: Create Chatbot API Endpointsโ
Location: apps/api/chatbot_api.py
Endpoints:
POST /chatbot/message # Send message to chatbot
POST /chatbot/voice # Voice message
GET /chatbot/history # Get conversation history
POST /chatbot/feedback # Submit feedback
GET /chatbot/agents # List available agents
POST /chatbot/agent/create # Create custom agent
WS /chatbot/stream # WebSocket for streaming
Task 1.3: Build Intent Recognition Layerโ
Location: packages/conversational/intent_recognition.py
Features:
- Integrate Rasa NLU
- Train on common intents
- Entity extraction with spaCy
- Intent confidence scoring
- Multi-language support
Task 1.4: Build Dialogue Management Layerโ
Location: packages/conversational/dialogue_manager.py
Features:
- Rasa Core integration
- Context tracking
- Slot filling
- Follow-up questions
- Clarification handling
Phase 2: UI Components (Weeks 3-4)โ
Task 2.1: Streamlit Demo Interfaceโ
Location: examples/chatbot/streamlit_demo.py
Features:
- Basic chat interface
- Agent selection
- File upload
- Export conversation
- Testing interface
Task 2.2: Gradio Testing Interfaceโ
Location: examples/chatbot/gradio_demo.py
Features:
- Model testing
- Quick prototyping
- Voice input/output
- Shareable links
Task 2.3: Chainlit Production Interfaceโ
Location: apps/chatbot_ui/
Features:
- Multi-turn conversations
- Streaming responses
- File attachments
- User authentication
- Custom branding
- Feedback collection
Task 2.4: React Component Libraryโ
Location: apps/web_ui/
Components:
- ChatWindow
- MessageList
- MessageInput with rich text
- TypingIndicator
- VoiceInput
- FileUpload
- FeedbackWidget
- AgentSelector
Phase 3: Multi-Channel Integration (Week 5)โ
Task 3.1: Slack Botโ
Location: packages/channels/slack_adapter.py
Features:
- Slash commands
- Interactive messages
- File sharing
- Thread support
Task 3.2: Teams Botโ
Location: packages/channels/teams_adapter.py
Features:
- Adaptive cards
- File sharing
- Meeting integration
Task 3.3: Telegram Botโ
Location: packages/channels/telegram_adapter.py
Features:
- Inline keyboards
- File sharing
- Voice messages
Task 3.4: Generic Webhook Adapterโ
Location: packages/channels/webhook_adapter.py
Features:
- Configurable endpoints
- Custom authentication
- Format transformation
Phase 4: Voice Capabilities (Week 6)โ
Task 4.1: Speech-to-Text Integrationโ
Location: packages/voice/stt_service.py
Features:
- Whisper API integration
- Local Whisper model fallback
- Language detection
- Streaming audio
Task 4.2: Text-to-Speech Integrationโ
Location: packages/voice/tts_service.py
Features:
- OpenAI TTS API
- Piper TTS fallback
- Voice selection
- Audio streaming
Task 4.3: Voice API Endpointsโ
Location: apps/api/voice_api.py
Endpoints:
POST /voice/transcribe # STT
POST /voice/synthesize # TTS
WS /voice/stream # Streaming audio
Phase 5: Agent Builder Interface (Weeks 7-8)โ
Task 5.1: Agent Configuration Schemaโ
Location: packages/agents/agent_config_schema.py
Schema:
{
"name": "Custom Agent",
"description": "...",
"type": "rag" | "conversational" | "task",
"tools": ["retrieval", "web_search", ...],
"policies": {
"safety": {...},
"rate_limit": {...},
"escalation": {...}
},
"prompts": {
"system": "...",
"planning": "...",
"answering": "..."
},
"knowledge_base": {
"sources": [...],
"filters": {...}
},
"llm_config": {
"model": "gpt-4",
"temperature": 0.1,
"max_tokens": 2000
}
}
Task 5.2: Agent Builder UIโ
Location: apps/agent_builder/
Features:
- Visual agent creation wizard
- Tool selection interface
- Prompt template editor
- Policy configuration
- Knowledge base selector
- Testing playground
- Export/import agents
Task 5.3: Agent Registryโ
Location: packages/agents/agent_registry.py
Features:
- Register custom agents
- Version management
- Agent discovery
- Deployment management