Skip to main content

Chatbot & AI Agent Creation - Comprehensive Implementation Plan

Status: Planning Phase
Date: October 9, 2025
Version: 1.0


๐ŸŽฏ Executive Summaryโ€‹

This document outlines the comprehensive plan for implementing a Chatbot & AI Agent Creation feature in RecoAgent. The plan leverages our existing infrastructure and integrates carefully selected open-source libraries to create a production-ready, enterprise-grade chatbot platform without duplicating effort.

Key Objectivesโ€‹

  1. Build a Multi-Modal Chatbot Interface - Support text, voice, and rich media interactions
  2. Enable Custom Agent Creation - Allow users to create, configure, and deploy specialized agents
  3. Provide Conversational UI Components - Reusable UI components for chat interfaces
  4. Support Multi-Channel Deployment - Web, mobile, Slack, Teams, WhatsApp, etc.
  5. Enterprise Features - Analytics, monitoring, A/B testing, and compliance

๐Ÿ“Š Current Infrastructure Assessmentโ€‹

โœ… What We Already Haveโ€‹

1. Agent Framework (LangGraph-based)โ€‹

Location: packages/agents/

  • graphs.py: Complete LangGraph-based agent state machine

    • RAG workflow (retrieve โ†’ rerank โ†’ plan โ†’ act โ†’ answer)
    • Tool integration via ToolNode
    • Error handling and escalation
    • Cost tracking and latency monitoring
  • tools.py: Extensible tool system

    • RetrievalTool (hybrid retrieval)
    • RerankingTool (cross-encoder reranking)
    • WebSearchTool (external search)
    • EscalateTool (human handoff)
    • ToolRegistry for managing tools
  • policies.py: Comprehensive safety and governance

    • SafetyPolicy (input/output filtering, PII detection)
    • ToolPolicy (usage limits, allowed tools)
    • EscalationPolicy (human handoff triggers)
    • RateLimitPolicy (burst protection)
    • PolicyEngine (multi-policy evaluation)
  • middleware.py: Production middleware

    • GuardrailsMiddleware (safety filtering)
    • CostTrackingMiddleware (budget enforcement)
    • LatencyTrackingMiddleware (performance monitoring)
    • AuthenticationMiddleware (user auth)
  • callbacks.py: Observability and monitoring

    • AgentCallbackHandler (base monitoring)
    • MetricsCallbackHandler (detailed metrics)
    • LangSmithCallbackHandler (LangSmith integration)
    • CustomCallbackHandler (extensible hooks)

2. Specialized Agentsโ€‹

Location: packages/agents/

  • medical_agent.py: Medical knowledge assistant

    • Query expansion with medical terminology
    • Faceted search for clinical guidelines
    • Safety validation (contraindications, drug interactions)
    • Patient context awareness
  • compliance_agent.py: Financial compliance assistant

    • Regulatory terminology and authority weighting
    • Escalation logic for complex queries
    • Audit logging
    • Legal disclaimers
  • manufacturing_agent.py: Manufacturing process assistant

  • research_lab_agent.py: Research lab knowledge management

3. Memory & Conversation Managementโ€‹

Location: recoagent/memory/

Features:

  • SQLite-based persistence with connection pooling
  • Thread-based session isolation
  • Multi-type search (exact, fuzzy, semantic)
  • Memory optimization and cleanup strategies
  • LangGraph state compatibility
  • Multi-user support with role-based responses

Components:

  • state/conversation_state.py: Rich conversation state
  • session/thread_manager.py: Session lifecycle management
  • persistence/async_sqlite_saver.py: High-performance persistence
  • session/history_api.py: Search and analytics
  • cleanup/memory_optimizer.py: Cleanup strategies

4. RAG Systemโ€‹

Location: packages/rag/

  • Hybrid retrieval (BM25 + vector search)
  • Cross-encoder reranking
  • Query expansion
  • Document search and summarization
  • Faceted search
  • Multiple specialized retrieval pipelines

5. Observability Stackโ€‹

Location: packages/observability/

  • Structured logging (structlog)
  • Metrics collection (Prometheus)
  • Distributed tracing (Jaeger integration)
  • LangSmith integration
  • Cost and performance tracking

6. API Infrastructureโ€‹

Location: apps/api/

  • FastAPI-based REST API
  • JWT authentication
  • Rate limiting (Redis-based)
  • CORS and security headers
  • Health checks
  • PostgreSQL for persistence
  • Kubernetes deployment configs

7. Dependencies Already Installedโ€‹

From requirements.txt:

langchain>=0.1.0
langgraph>=0.0.40
langsmith>=0.0.80
openai>=1.12.0
fastapi>=0.104.0
sentence-transformers>=2.2.2
transformers>=4.36.0
nemoguardrails>=0.7.0
structlog>=23.2.0
redis>=5.0.0

๐Ÿ” Gap Analysis & Requirementsโ€‹

What We Need to Buildโ€‹

1. Chatbot UI Componentsโ€‹

  • React-based chat interface
  • Message rendering (text, code, tables, charts)
  • Rich media support (images, files, voice)
  • Typing indicators and avatars
  • Conversation history UI
  • Export and share functionality

2. Agent Builder Interfaceโ€‹

  • Visual agent creation workflow
  • Tool selection and configuration
  • Prompt template editor
  • Policy configuration UI
  • Testing and preview mode

3. Multi-Channel Adaptersโ€‹

  • Slack integration
  • Microsoft Teams integration
  • WhatsApp Business API
  • Telegram bot
  • Discord bot
  • Generic webhook adapter

4. Voice Capabilitiesโ€‹

  • Speech-to-text (STT)
  • Text-to-speech (TTS)
  • Audio streaming
  • Language detection

5. Advanced Conversation Featuresโ€‹

  • Intent recognition
  • Entity extraction
  • Dialogue flow management
  • Context switching
  • Clarification questions
  • Follow-up suggestions

6. Analytics & Insightsโ€‹

  • Conversation analytics dashboard
  • User engagement metrics
  • Agent performance metrics
  • A/B testing framework
  • Feedback collection

Category 1: Conversational AI Frameworksโ€‹

1. Rasa (Dialogue Management)โ€‹

Purpose: Natural language understanding and dialogue management
Why: Industry-standard for intent recognition and dialogue flows
Integration Point: Enhance conversation flow management

Features We'll Use:

  • Intent classification
  • Entity extraction
  • Dialogue policies
  • Custom actions
  • Form filling

Installation:

pip install rasa>=3.6.0

Integration Strategy:

  • Use Rasa NLU for intent/entity extraction
  • Leverage Rasa Core for dialogue management
  • Integrate with our existing LangGraph agents as a pre-processing step
  • Keep our LangGraph orchestration as the main agent brain

2. Haystack (NLP Pipeline)โ€‹

Purpose: End-to-end NLP pipelines
Why: Excellent for question answering and document search
Integration Point: Enhance our RAG pipeline

Features We'll Use:

  • Document stores
  • Retrievers
  • Readers
  • Generators
  • Pipeline composition

Installation:

pip install farm-haystack>=1.22.0

Integration Strategy:

  • Use Haystack's readers for extractive QA
  • Leverage document processors
  • Integrate with our existing retrievers

Category 2: Frontend & UI Librariesโ€‹

3. Streamlit (Rapid Prototyping)โ€‹

Purpose: Quick chatbot UI prototyping
Why: Fast development, Python-native, great for demos
Integration Point: Demo applications and internal tools

Features We'll Use:

  • Chat UI components
  • Session state management
  • File upload/download
  • Charts and visualizations

Installation:

pip install streamlit>=1.28.0
streamlit-chat>=0.1.1

Use Cases:

  • Internal testing interfaces
  • Demo applications
  • Admin dashboards

4. Gradio (ML Model Interfaces)โ€‹

Purpose: Machine learning model interfaces
Why: Easy-to-use, supports sharing, excellent for ML demos
Integration Point: Agent testing and demos

Features We'll Use:

  • Chat interface
  • Audio input/output
  • File upload
  • API generation

Installation:

pip install gradio>=4.0.0

Use Cases:

  • Model testing interfaces
  • Public demos
  • Stakeholder presentations

5. Chainlit (Production Chatbot UI)โ€‹

Purpose: Production-ready chatbot UI
Why: Built specifically for LangChain/LangGraph applications
Integration Point: Main chatbot interface

Features We'll Use:

  • Multi-turn conversations
  • Streaming responses
  • File attachments
  • Authentication
  • Chat history
  • Feedback collection
  • Custom actions

Installation:

pip install chainlit>=1.0.0

Integration Strategy:

  • Primary chatbot UI for production
  • Direct integration with LangGraph agents
  • Custom branding and theming
  • Deploy as standalone service

6. React + TypeScript (Custom Web UI)โ€‹

Purpose: Custom-branded chatbot interface
Why: Full control, enterprise-grade, scalable
Integration Point: Client-facing chatbot

Recommended Stack:

{
"@chatscope/chat-ui-kit-react": "^2.0.0",
"react": "^18.2.0",
"react-dom": "^18.2.0",
"typescript": "^5.2.0",
"axios": "^1.5.0",
"socket.io-client": "^4.7.0",
"react-query": "^3.39.0"
}

Components to Build:

  • ChatWindow
  • MessageList
  • MessageInput
  • TypingIndicator
  • FileUpload
  • VoiceInput
  • FeedbackWidget

Category 3: Natural Language Processingโ€‹

7. spaCy (Entity Extraction)โ€‹

Purpose: Advanced NLP and entity recognition
Why: Fast, accurate, production-ready
Integration Point: Pre-processing layer

Installation:

pip install spacy>=3.7.0
python -m spacy download en_core_web_lg

Use Cases:

  • Named entity recognition
  • Part-of-speech tagging
  • Dependency parsing
  • Custom entity extraction

8. NLTK (Text Processing)โ€‹

Purpose: Text processing and analysis
Why: Comprehensive toolkit for NLP tasks
Integration Point: Text preprocessing

Installation:

pip install nltk>=3.8.1

Use Cases:

  • Tokenization
  • Stemming/lemmatization
  • Sentiment analysis
  • Text classification

Category 4: Multi-Channel Integrationโ€‹

9. Slack SDKโ€‹

Purpose: Slack bot integration
Why: Official SDK, well-maintained

Installation:

pip install slack-sdk>=3.26.0
slack-bolt>=1.18.0

10. Microsoft Bot Framework SDKโ€‹

Purpose: Teams integration
Why: Official Microsoft SDK

Installation:

pip install botbuilder-core>=4.16.0
botbuilder-schema>=4.16.0

11. python-telegram-botโ€‹

Purpose: Telegram bot integration
Why: Most popular Python library for Telegram

Installation:

pip install python-telegram-bot>=20.7

Category 5: Voice & Speechโ€‹

12. Whisper (Speech-to-Text)โ€‹

Purpose: Speech recognition
Why: State-of-the-art, multilingual, open-source

Installation:

pip install openai-whisper>=20231117

Integration Strategy:

  • Use OpenAI Whisper API for production
  • Use local Whisper model for privacy-sensitive scenarios

13. Piper TTS (Text-to-Speech)โ€‹

Purpose: Neural text-to-speech
Why: Fast, high-quality, offline-capable

Installation:

pip install piper-tts>=1.2.0

Alternative: Use OpenAI TTS API for production


Category 6: Analytics & Monitoringโ€‹

14. Plotly Dash (Analytics Dashboard)โ€‹

Purpose: Interactive analytics dashboards
Why: Python-native, interactive, production-ready

Installation:

pip install dash>=2.14.0
plotly>=5.18.0

Use Cases:

  • Conversation analytics
  • Agent performance metrics
  • User engagement tracking

Category 7: Testing & Evaluationโ€‹

15. Pytest & Testing Toolsโ€‹

Already Installed

Additional testing libraries:

pip install pytest-asyncio>=0.21.0
pytest-mock>=3.12.0
httpx>=0.25.0 # For async API testing

16. Locust (Load Testing)โ€‹

Purpose: Load testing for chatbot APIs
Why: Python-native, scalable, great for async testing

Installation:

pip install locust>=2.17.0

Category 8: Advanced Featuresโ€‹

17. LangChain Community (Extended Tools)โ€‹

Purpose: Additional LangChain integrations
Why: Community-contributed tools and integrations

Installation:

pip install langchain-community>=0.0.10

Features:

  • Additional vector stores
  • More tools
  • Extended retrievers

18. AutoGen (Multi-Agent Collaboration)โ€‹

Purpose: Multi-agent conversations
Why: Enable agent-to-agent communication

Installation:

pip install pyautogen>=0.2.0

Use Cases:

  • Complex problem-solving with multiple agents
  • Agent collaboration workflows
  • Hierarchical agent structures

๐Ÿ—๏ธ Proposed Architectureโ€‹

System Architectureโ€‹

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ Client Layer โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ Web UI โ”‚ Mobile โ”‚ Slack โ”‚ Teams โ”‚ WhatsApp โ”‚
โ”‚ (React/ โ”‚ App โ”‚ Bot โ”‚ Bot โ”‚ Bot โ”‚
โ”‚ Chainlit) โ”‚ โ”‚ โ”‚ โ”‚ โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
โ”‚
โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ API Gateway (FastAPI) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ โ€ข Authentication (JWT) โ”‚
โ”‚ โ€ข Rate Limiting (Redis) โ”‚
โ”‚ โ€ข Request Routing โ”‚
โ”‚ โ€ข WebSocket Support โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
โ”‚
โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ Conversation Orchestration Layer โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ โ”‚
โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚
โ”‚ โ”‚ Intent โ”‚โ”€โ”€โ”€โ–ถโ”‚ Dialogue โ”‚โ”€โ”€โ”€โ–ถโ”‚ Agent โ”‚ โ”‚
โ”‚ โ”‚ Recognition โ”‚ โ”‚ Management โ”‚ โ”‚ Orchestrator โ”‚ โ”‚
โ”‚ โ”‚ (Rasa) โ”‚ โ”‚ (Rasa) โ”‚ โ”‚ (LangGraph) โ”‚ โ”‚
โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚
โ”‚ โ”‚ โ”‚ โ”‚ โ”‚
โ”‚ โ–ผ โ–ผ โ–ผ โ”‚
โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚
โ”‚ โ”‚ Entity Extraction (spaCy + NLTK) โ”‚ โ”‚
โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
โ”‚
โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ Agent Layer (LangGraph) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ โ”‚
โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚
โ”‚ โ”‚ Medical โ”‚ โ”‚Complianceโ”‚ โ”‚ IT โ”‚ โ”‚ Custom โ”‚ โ”‚
โ”‚ โ”‚ Agent โ”‚ โ”‚ Agent โ”‚ โ”‚ Support โ”‚ โ”‚ Agents โ”‚ โ”‚
โ”‚ โ””โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚
โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚
โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚
โ”‚ โ”‚ โ”‚
โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚
โ”‚ โ”‚ Tool Registry โ”‚ โ”‚
โ”‚ โ”‚ (Retrieval, Web, โ”‚ โ”‚
โ”‚ โ”‚ Escalation, etc) โ”‚ โ”‚
โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
โ”‚
โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ Knowledge & Data Layer โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ โ”‚
โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚
โ”‚ โ”‚ RAG โ”‚ โ”‚ Memory โ”‚ โ”‚ Vector โ”‚ โ”‚
โ”‚ โ”‚ Pipeline โ”‚ โ”‚ System โ”‚ โ”‚ Store โ”‚ โ”‚
โ”‚ โ”‚ (Haystack) โ”‚ โ”‚ (SQLite) โ”‚ โ”‚(OpenSearch) โ”‚ โ”‚
โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
โ”‚
โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ Observability & Monitoring Layer โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ โ”‚
โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚
โ”‚ โ”‚ LangSmith โ”‚ โ”‚ Prometheus/ โ”‚ โ”‚ Dash โ”‚ โ”‚
โ”‚ โ”‚ Tracing โ”‚ โ”‚ Grafana โ”‚ โ”‚ Analytics โ”‚ โ”‚
โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

Data Flowโ€‹

User Input
โ”‚
โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ 1. Channel Adapter โ”‚ (Slack, Web, etc)
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
โ”‚
โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ 2. API Gateway โ”‚ (Auth, Rate Limit)
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
โ”‚
โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ 3. Intent Detection โ”‚ (Rasa NLU)
โ”‚ Entity Extract โ”‚ (spaCy)
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
โ”‚
โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ 4. Dialogue Manager โ”‚ (Rasa Core)
โ”‚ Context Switch โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
โ”‚
โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ 5. Agent Selection โ”‚ (Route to correct agent)
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
โ”‚
โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ 6. LangGraph Agent โ”‚ (State machine execution)
โ”‚ - Retrieve โ”‚
โ”‚ - Rerank โ”‚
โ”‚ - Plan โ”‚
โ”‚ - Act โ”‚
โ”‚ - Answer โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
โ”‚
โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ 7. Safety Policies โ”‚ (Guardrails)
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
โ”‚
โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ 8. Response Format โ”‚ (Text, Voice, Rich)
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
โ”‚
โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ 9. Memory Update โ”‚ (Conversation history)
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
โ”‚
โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ 10. Channel Adapter โ”‚ (Send response)
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
โ”‚
โ–ผ
User Response

๐Ÿ“ฆ Component Breakdownโ€‹

Phase 1: Core Chatbot Infrastructure (Weeks 1-2)โ€‹

Task 1.1: Install and Configure Dependenciesโ€‹

# Conversational AI
pip install rasa>=3.6.0
pip install farm-haystack>=1.22.0

# UI Components
pip install streamlit>=1.28.0 streamlit-chat>=0.1.1
pip install gradio>=4.0.0
pip install chainlit>=1.0.0

# NLP
pip install spacy>=3.7.0
python -m spacy download en_core_web_lg

# Multi-channel
pip install slack-sdk>=3.26.0 slack-bolt>=1.18.0
pip install python-telegram-bot>=20.7
pip install botbuilder-core>=4.16.0

# Voice
pip install openai-whisper>=20231117
pip install piper-tts>=1.2.0

# Analytics
pip install dash>=2.14.0 plotly>=5.18.0

# Testing
pip install pytest-asyncio>=0.21.0
pip install locust>=2.17.0

# Advanced
pip install langchain-community>=0.0.10
pip install pyautogen>=0.2.0

Task 1.2: Create Chatbot API Endpointsโ€‹

Location: apps/api/chatbot_api.py

Endpoints:

POST /chatbot/message          # Send message to chatbot
POST /chatbot/voice # Voice message
GET /chatbot/history # Get conversation history
POST /chatbot/feedback # Submit feedback
GET /chatbot/agents # List available agents
POST /chatbot/agent/create # Create custom agent
WS /chatbot/stream # WebSocket for streaming

Task 1.3: Build Intent Recognition Layerโ€‹

Location: packages/conversational/intent_recognition.py

Features:

  • Integrate Rasa NLU
  • Train on common intents
  • Entity extraction with spaCy
  • Intent confidence scoring
  • Multi-language support

Task 1.4: Build Dialogue Management Layerโ€‹

Location: packages/conversational/dialogue_manager.py

Features:

  • Rasa Core integration
  • Context tracking
  • Slot filling
  • Follow-up questions
  • Clarification handling

Phase 2: UI Components (Weeks 3-4)โ€‹

Task 2.1: Streamlit Demo Interfaceโ€‹

Location: examples/chatbot/streamlit_demo.py

Features:

  • Basic chat interface
  • Agent selection
  • File upload
  • Export conversation
  • Testing interface

Task 2.2: Gradio Testing Interfaceโ€‹

Location: examples/chatbot/gradio_demo.py

Features:

  • Model testing
  • Quick prototyping
  • Voice input/output
  • Shareable links

Task 2.3: Chainlit Production Interfaceโ€‹

Location: apps/chatbot_ui/

Features:

  • Multi-turn conversations
  • Streaming responses
  • File attachments
  • User authentication
  • Custom branding
  • Feedback collection

Task 2.4: React Component Libraryโ€‹

Location: apps/web_ui/

Components:

  • ChatWindow
  • MessageList
  • MessageInput with rich text
  • TypingIndicator
  • VoiceInput
  • FileUpload
  • FeedbackWidget
  • AgentSelector

Phase 3: Multi-Channel Integration (Week 5)โ€‹

Task 3.1: Slack Botโ€‹

Location: packages/channels/slack_adapter.py

Features:

  • Slash commands
  • Interactive messages
  • File sharing
  • Thread support

Task 3.2: Teams Botโ€‹

Location: packages/channels/teams_adapter.py

Features:

  • Adaptive cards
  • File sharing
  • Meeting integration

Task 3.3: Telegram Botโ€‹

Location: packages/channels/telegram_adapter.py

Features:

  • Inline keyboards
  • File sharing
  • Voice messages

Task 3.4: Generic Webhook Adapterโ€‹

Location: packages/channels/webhook_adapter.py

Features:

  • Configurable endpoints
  • Custom authentication
  • Format transformation

Phase 4: Voice Capabilities (Week 6)โ€‹

Task 4.1: Speech-to-Text Integrationโ€‹

Location: packages/voice/stt_service.py

Features:

  • Whisper API integration
  • Local Whisper model fallback
  • Language detection
  • Streaming audio

Task 4.2: Text-to-Speech Integrationโ€‹

Location: packages/voice/tts_service.py

Features:

  • OpenAI TTS API
  • Piper TTS fallback
  • Voice selection
  • Audio streaming

Task 4.3: Voice API Endpointsโ€‹

Location: apps/api/voice_api.py

Endpoints:

POST /voice/transcribe    # STT
POST /voice/synthesize # TTS
WS /voice/stream # Streaming audio

Phase 5: Agent Builder Interface (Weeks 7-8)โ€‹

Task 5.1: Agent Configuration Schemaโ€‹

Location: packages/agents/agent_config_schema.py

Schema:

{
"name": "Custom Agent",
"description": "...",
"type": "rag" | "conversational" | "task",
"tools": ["retrieval", "web_search", ...],
"policies": {
"safety": {...},
"rate_limit": {...},
"escalation": {...}
},
"prompts": {
"system": "...",
"planning": "...",
"answering": "..."
},
"knowledge_base": {
"sources": [...],
"filters": {...}
},
"llm_config": {
"model": "gpt-4",
"temperature": 0.1,
"max_tokens": 2000
}
}

Task 5.2: Agent Builder UIโ€‹

Location: apps/agent_builder/

Features:

  • Visual agent creation wizard
  • Tool selection interface
  • Prompt template editor
  • Policy configuration
  • Knowledge base selector
  • Testing playground
  • Export/import agents

Task 5.3: Agent Registryโ€‹

Location: packages/agents/agent_registry.py

Features:

  • Register custom agents
  • Version management
  • Agent discovery
  • Deployment management

Phase 6: Analytics & Insights (Week 9)โ€‹

Task 6.1: Conversation Analyticsโ€‹

Location: packages/analytics/conversation_analytics.py

Metrics:

  • Message volume
  • User engagement
  • Response times
  • Satisfaction scores
  • Popular queries
  • Escalation rates

Task 6.2: Agent Performance Metricsโ€‹

Location: packages/analytics/agent_metrics.py

Metrics:

  • Success rates
  • Error rates
  • Tool usage
  • Cost per conversation
  • Latency percentiles

Task 6.3: Analytics Dashboardโ€‹

Location: apps/analytics_dashboard/

Features:

  • Real-time metrics
  • Historical trends
  • Comparative analysis
  • Export reports
  • Custom alerts

Phase 7: Advanced Features (Week 10)โ€‹

Task 7.1: A/B Testing Frameworkโ€‹

Location: packages/experimentation/ab_testing.py

Features:

  • Experiment definition
  • Traffic splitting
  • Metrics collection
  • Statistical analysis
  • Winner selection

Task 7.2: Multi-Agent Collaborationโ€‹

Location: packages/agents/multi_agent.py

Features:

  • AutoGen integration
  • Agent-to-agent communication
  • Hierarchical structures
  • Collaborative problem-solving

Task 7.3: Advanced Intent Handlingโ€‹

Location: packages/conversational/advanced_intents.py

Features:

  • Multi-intent detection
  • Intent disambiguation
  • Context-aware routing
  • Intent learning

๐Ÿ—‚๏ธ File Structureโ€‹

recoagent/
โ”œโ”€โ”€ apps/
โ”‚ โ”œโ”€โ”€ api/
โ”‚ โ”‚ โ”œโ”€โ”€ chatbot_api.py # NEW: Chatbot API endpoints
โ”‚ โ”‚ โ”œโ”€โ”€ voice_api.py # NEW: Voice endpoints
โ”‚ โ”‚ โ””โ”€โ”€ channels_api.py # NEW: Channel management
โ”‚ โ”‚
โ”‚ โ”œโ”€โ”€ chatbot_ui/ # NEW: Chainlit production UI
โ”‚ โ”‚ โ”œโ”€โ”€ app.py
โ”‚ โ”‚ โ”œโ”€โ”€ config.toml
โ”‚ โ”‚ โ””โ”€โ”€ components/
โ”‚ โ”‚
โ”‚ โ”œโ”€โ”€ web_ui/ # NEW: React web UI
โ”‚ โ”‚ โ”œโ”€โ”€ src/
โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ components/
โ”‚ โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ ChatWindow.tsx
โ”‚ โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ MessageList.tsx
โ”‚ โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ MessageInput.tsx
โ”‚ โ”‚ โ”‚ โ”‚ โ””โ”€โ”€ VoiceInput.tsx
โ”‚ โ”‚ โ”‚ โ””โ”€โ”€ App.tsx
โ”‚ โ”‚ โ””โ”€โ”€ package.json
โ”‚ โ”‚
โ”‚ โ”œโ”€โ”€ agent_builder/ # NEW: Agent builder UI
โ”‚ โ”‚ โ”œโ”€โ”€ app.py
โ”‚ โ”‚ โ””โ”€โ”€ components/
โ”‚ โ”‚
โ”‚ โ””โ”€โ”€ analytics_dashboard/ # NEW: Analytics dashboard
โ”‚ โ”œโ”€โ”€ app.py
โ”‚ โ””โ”€โ”€ layouts/
โ”‚
โ”œโ”€โ”€ packages/
โ”‚ โ”œโ”€โ”€ conversational/ # NEW: Conversational AI
โ”‚ โ”‚ โ”œโ”€โ”€ __init__.py
โ”‚ โ”‚ โ”œโ”€โ”€ intent_recognition.py
โ”‚ โ”‚ โ”œโ”€โ”€ entity_extraction.py
โ”‚ โ”‚ โ”œโ”€โ”€ dialogue_manager.py
โ”‚ โ”‚ โ””โ”€โ”€ advanced_intents.py
โ”‚ โ”‚
โ”‚ โ”œโ”€โ”€ channels/ # NEW: Multi-channel adapters
โ”‚ โ”‚ โ”œโ”€โ”€ __init__.py
โ”‚ โ”‚ โ”œโ”€โ”€ base_adapter.py
โ”‚ โ”‚ โ”œโ”€โ”€ slack_adapter.py
โ”‚ โ”‚ โ”œโ”€โ”€ teams_adapter.py
โ”‚ โ”‚ โ”œโ”€โ”€ telegram_adapter.py
โ”‚ โ”‚ โ””โ”€โ”€ webhook_adapter.py
โ”‚ โ”‚
โ”‚ โ”œโ”€โ”€ voice/ # NEW: Voice capabilities
โ”‚ โ”‚ โ”œโ”€โ”€ __init__.py
โ”‚ โ”‚ โ”œโ”€โ”€ stt_service.py
โ”‚ โ”‚ โ”œโ”€โ”€ tts_service.py
โ”‚ โ”‚ โ””โ”€โ”€ audio_processor.py
โ”‚ โ”‚
โ”‚ โ”œโ”€โ”€ agents/ # EXISTING (enhance)
โ”‚ โ”‚ โ”œโ”€โ”€ agent_registry.py # NEW
โ”‚ โ”‚ โ”œโ”€โ”€ agent_config_schema.py # NEW
โ”‚ โ”‚ โ”œโ”€โ”€ multi_agent.py # NEW
โ”‚ โ”‚ โ””โ”€โ”€ ... (existing files)
โ”‚ โ”‚
โ”‚ โ””โ”€โ”€ analytics/ # EXISTING (enhance)
โ”‚ โ”œโ”€โ”€ conversation_analytics.py # NEW
โ”‚ โ””โ”€โ”€ agent_metrics.py # NEW
โ”‚
โ”œโ”€โ”€ examples/
โ”‚ โ””โ”€โ”€ chatbot/ # NEW: Chatbot examples
โ”‚ โ”œโ”€โ”€ streamlit_demo.py
โ”‚ โ”œโ”€โ”€ gradio_demo.py
โ”‚ โ”œโ”€โ”€ slack_bot_example.py
โ”‚ โ””โ”€โ”€ voice_bot_example.py
โ”‚
โ”œโ”€โ”€ tests/
โ”‚ โ”œโ”€โ”€ test_conversational/ # NEW
โ”‚ โ”œโ”€โ”€ test_channels/ # NEW
โ”‚ โ””โ”€โ”€ test_voice/ # NEW
โ”‚
โ””โ”€โ”€ docs/
โ””โ”€โ”€ docs/
โ”œโ”€โ”€ chatbot/ # NEW: Chatbot docs
โ”‚ โ”œโ”€โ”€ quickstart.md
โ”‚ โ”œโ”€โ”€ architecture.md
โ”‚ โ”œโ”€โ”€ agent-builder.md
โ”‚ โ”œโ”€โ”€ multi-channel.md
โ”‚ โ””โ”€โ”€ voice-integration.md
โ””โ”€โ”€ features/
โ””โ”€โ”€ CHATBOT_AI_AGENT_CREATION_PLAN.md # THIS FILE

๐Ÿ”— Integration Strategyโ€‹

How Components Work Togetherโ€‹

1. Existing LangGraph + Rasaโ€‹

  • Before: User input โ†’ LangGraph agent
  • After: User input โ†’ Rasa (intent/entity) โ†’ LangGraph agent
  • Benefit: Better intent understanding, entity extraction

2. Existing Agents + Rasa Dialogueโ€‹

  • Before: Direct agent invocation
  • After: Dialogue manager โ†’ Agent routing โ†’ Agent execution
  • Benefit: Multi-turn conversations, context management

3. Existing Memory + Conversation Historyโ€‹

  • Keep: Our SQLite-based memory system
  • Enhance: Add conversation analytics, export features
  • Benefit: Already production-ready

4. Existing RAG + Haystackโ€‹

  • Keep: Our hybrid retriever
  • Add: Haystack readers for extractive QA
  • Benefit: Better answer extraction

5. Existing API + New Endpointsโ€‹

  • Keep: FastAPI infrastructure
  • Add: Chatbot, voice, and channel endpoints
  • Benefit: Unified API

๐Ÿ“‹ Implementation Phasesโ€‹

Phase 1: Foundation (Weeks 1-2)โ€‹

Goal: Core chatbot infrastructure

Deliverables:

  • โœ… All dependencies installed
  • โœ… Basic chatbot API endpoints
  • โœ… Intent recognition layer
  • โœ… Dialogue management layer
  • โœ… Basic Streamlit UI

Success Criteria:

  • Can send message and get response
  • Intent recognition works
  • Conversation history tracked

Phase 2: UI Development (Weeks 3-4)โ€‹

Goal: Multiple UI options

Deliverables:

  • โœ… Streamlit demo interface
  • โœ… Gradio testing interface
  • โœ… Chainlit production interface
  • โœ… React component library (started)

Success Criteria:

  • 3 working UI options
  • Streaming responses work
  • File upload works

Phase 3: Multi-Channel (Week 5)โ€‹

Goal: Deploy to multiple platforms

Deliverables:

  • โœ… Slack bot
  • โœ… Telegram bot
  • โœ… Teams bot
  • โœ… Webhook adapter

Success Criteria:

  • Bot works on 3 platforms
  • Same agent logic everywhere
  • Consistent user experience

Phase 4: Voice (Week 6)โ€‹

Goal: Add voice capabilities

Deliverables:

  • โœ… Speech-to-text
  • โœ… Text-to-speech
  • โœ… Voice API endpoints
  • โœ… Voice UI components

Success Criteria:

  • Can speak to bot
  • Bot can respond with voice
  • Works across channels

Phase 5: Agent Builder (Weeks 7-8)โ€‹

Goal: Enable custom agent creation

Deliverables:

  • โœ… Agent configuration schema
  • โœ… Visual agent builder UI
  • โœ… Agent registry
  • โœ… Testing playground

Success Criteria:

  • Non-technical user can create agent
  • Agent can be deployed
  • Agent works in production

Phase 6: Analytics (Week 9)โ€‹

Goal: Insights and monitoring

Deliverables:

  • โœ… Conversation analytics
  • โœ… Agent performance metrics
  • โœ… Analytics dashboard
  • โœ… Reporting system

Success Criteria:

  • Real-time metrics visible
  • Historical trends tracked
  • Exportable reports

Phase 7: Advanced Features (Week 10)โ€‹

Goal: Production enhancements

Deliverables:

  • โœ… A/B testing framework
  • โœ… Multi-agent collaboration
  • โœ… Advanced intent handling
  • โœ… Production hardening

Success Criteria:

  • Can run A/B tests
  • Multiple agents can collaborate
  • System is production-ready

๐Ÿงช Testing Strategyโ€‹

Unit Testsโ€‹

# Test conversational layer
pytest tests/test_conversational/

# Test channels
pytest tests/test_channels/

# Test voice
pytest tests/test_voice/

# Test agents
pytest tests/test_agents/

Integration Testsโ€‹

# End-to-end chatbot flow
pytest tests/integration/test_chatbot_e2e.py

# Multi-channel integration
pytest tests/integration/test_multi_channel.py

# Voice integration
pytest tests/integration/test_voice_flow.py

Load Testsโ€‹

# API load test
locust -f tests/load/locustfile.py --host=http://localhost:8000

# WebSocket load test
locust -f tests/load/websocket_load.py

๐Ÿ“Š Success Metricsโ€‹

Technical Metricsโ€‹

  • Response Time: < 2s for text, < 5s for voice
  • Uptime: 99.9%
  • Throughput: 100+ concurrent conversations
  • Error Rate: < 0.1%

Business Metricsโ€‹

  • User Satisfaction: > 4.0/5.0
  • Conversation Completion: > 80%
  • Escalation Rate: < 10%
  • Agent Usage: > 50% of queries handled by agents

Quality Metricsโ€‹

  • Intent Accuracy: > 90%
  • Entity Extraction: > 85%
  • Answer Relevance: > 90%
  • Safety Compliance: 100%

๐Ÿ”’ Security Considerationsโ€‹

Authenticationโ€‹

  • JWT tokens for API access
  • OAuth for third-party integrations
  • API keys for channel adapters

Data Privacyโ€‹

  • PII detection and filtering
  • Conversation encryption at rest
  • GDPR compliance (right to delete)
  • Data anonymization for analytics

Safetyโ€‹

  • Input sanitization
  • Output filtering
  • Rate limiting per user
  • Abuse detection

๐Ÿ’ฐ Cost Estimationโ€‹

Infrastructure Costs (Monthly)โ€‹

  • Compute: $500 (Kubernetes cluster)
  • Database: $100 (PostgreSQL + Redis)
  • Vector DB: $200 (OpenSearch)
  • Monitoring: $100 (Prometheus/Grafana)
  • Total Infrastructure: ~$900/month

LLM Costs (Monthly, 1000 users)โ€‹

  • OpenAI GPT-4: ~$2000 (assuming 10 messages/user/month)
  • Embeddings: ~$50
  • Whisper: ~$100 (if using API)
  • TTS: ~$100 (if using API)
  • Total LLM: ~$2250/month

Development Costsโ€‹

  • Phase 1-7: ~10 weeks ร— 2 developers = 20 dev-weeks
  • Testing & QA: ~2 weeks
  • Documentation: ~1 week
  • Total: ~23 dev-weeks

๐ŸŽฏ Next Stepsโ€‹

Immediate Actions (This Week)โ€‹

  1. Review and approve this plan
  2. Set up development environment
  3. Install core dependencies
  4. Create project structure

Week 1 Actionsโ€‹

  1. Install all dependencies
  2. Create basic API endpoints
  3. Build intent recognition layer
  4. Create Streamlit demo

Week 2 Actionsโ€‹

  1. Build dialogue manager
  2. Integrate with existing agents
  3. Add conversation history
  4. Deploy demo to staging

๐Ÿ“š Resourcesโ€‹

Documentationโ€‹

Tutorialsโ€‹

  • Building production chatbots with LangGraph
  • Rasa + LangChain integration
  • Multi-channel deployment strategies
  • Voice-enabled AI assistants

Communityโ€‹

  • LangChain Discord
  • Rasa Community Forum
  • Chainlit Discord
  • r/LangChain on Reddit

๐Ÿ“ Appendixโ€‹

A. Library Comparison Matrixโ€‹

FeatureRasaHaystackChainlitStreamlitGradio
Intent Recognitionโœ… ExcellentโŒ NoโŒ NoโŒ NoโŒ No
Dialogue Managementโœ… ExcellentโŒ Noโš ๏ธ Basicโš ๏ธ Basicโš ๏ธ Basic
UI ComponentsโŒ NoโŒ Noโœ… Excellentโœ… Goodโœ… Good
Production Readyโœ… Yesโœ… Yesโœ… Yesโš ๏ธ Limitedโš ๏ธ Limited
Customizationโœ… Highโœ… Highโœ… Highโš ๏ธ Mediumโš ๏ธ Medium
Learning Curveโš ๏ธ Steepโš ๏ธ Moderateโœ… Easyโœ… Easyโœ… Easy

B. Cost-Benefit Analysisโ€‹

Using Open-Source Libraries:

  • Cost Savings: ~80% reduction vs building from scratch
  • Time Savings: ~60% faster development
  • Quality: Production-tested, community-supported
  • Risk: Dependency on external libraries (mitigated by selecting mature projects)

Building Custom:

  • Cost: 3-4x more expensive
  • Time: 2-3x longer
  • Quality: Need to build testing and validation
  • Benefit: Full control, no dependencies

Recommendation: Use open-source libraries for core functionality, build custom only for unique requirements


โœ… Approvalโ€‹

Prepared By: AI Assistant
Date: October 9, 2025
Status: Awaiting Review

Stakeholder Sign-off:

  • Technical Lead
  • Product Manager
  • Engineering Team
  • Security Team

End of Document