Chatbot & AI Agent Creation
π Documentation Indexβ
This feature provides a complete chatbot and AI agent creation platform built on top of our existing LangGraph infrastructure.
π― Quick Startβ
New to This Feature?β
Start here: Planning Summary (5 min read)
Ready to Implement?β
Read: Quick Reference (15 min read)
Need Full Details?β
Read: Complete Implementation Plan (1 hour read)
Evaluating Libraries?β
Read: Library Comparison Matrix (30 min read)
π Documentation Structureβ
1. Planning Documentsβ
Document | Description | Time to Read |
---|---|---|
Planning Summary | Executive summary with key decisions | 5 minutes |
Quick Reference | TL;DR for developers | 15 minutes |
Complete Plan | Detailed implementation plan | 60 minutes |
Library Comparison | Technology stack evaluation | 30 minutes |
Planning Complete Summary | Final planning status & checklist | 10 minutes |
2. Architectureβ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β CLIENT LAYER β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β Web UI β Mobile β Slack β Teams β WhatsApp β
β (Chainlit) β App β Bot β Bot β Bot β
βββββββββββββββ¬ββββββββββββ΄ββββββββββββ΄ββββββββββ΄βββββββββββββ
β
βΌ
βββββββββββββββββ ββββββββββββββββββββββββββββββββββββββββββββββ
β API GATEWAY (FastAPI) β
β
β β’ Authentication β’ Rate Limiting β’ WebSocket β
βββββββββββββββ¬ββββββββββββββββββββββββββββββββββββββββββββββββ
β
βΌ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β CONVERSATIONAL LAYER (NEW) β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β ββββββββββββββββ ββββββββββββββββ ββββββββββββββββ β
β β Intent βββββΆβ Dialogue βββββΆβ Entity β β
β β Recognition β β Management β β Extraction β β
β β (Rasa) β β (Rasa) β β (spaCy) β β
β ββββββββββββββββ ββββββββββββββββ ββββββββββββββββ β
βββββββββββββββ¬ββββββββββββββββββββββββββββββββββββββββββββββββ
β
βΌ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β AGENT LAYER (LangGraph) β
β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β ββββββββββββ βββββββ βββββ ββββββββββββ ββββββββββββ β
β β Medical β βComplianceβ β IT β β Custom β β
β β Agent β β Agent β β Support β β Agents β β
β ββββββ¬ββββββ ββββββ¬ββββββ ββββββ¬ββββββ ββββββ¬ββββββ β
β βββββββββββββββ΄ββββββββββββββ΄ββββββββββββββ β
β β β
β ββββββββββββΌβββββββββββ β
β β Tool Registry β
β β
β ββββββββββββ¬βββββββββββ β
βββββββββββββββββββββββββββ¬ββββββββββββββββββββββββββββββββββββ
β
βΌ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β KNOWLEDGE & DATA LAYER β
β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β ββββββββββββββββ ββββββββββββββββ ββββββββββββββββ β
β β RAG β β Memory β β Vector β β
β β Pipeline β β System β β Store β β
β ββββββββββββββββ ββββββββββββββββ ββββββββββββββββ β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β
= Already implemented
3. What We Have vs. What We Needβ
Component | Status | Details |
---|---|---|
Agent Framework | β Complete | LangGraph-based, 4 specialized agents |
Memory System | β Complete | SQLite, thread-based sessions |
RAG Pipeline | β Complete | Hybrid retrieval + reranking |
API Infrastructure | β Complete | FastAPI + auth + rate limiting |
Observability | β Complete | Metrics, tracing, logging |
Intent Recognition | π¨ Build | Add Rasa NLU |
Dialogue Management | π¨ Build | Add Rasa Core |
Chat UI | π¨ Build | Add Chainlit + Streamlit |
Multi-Channel | π¨ Build | Add Slack, Teams, Telegram |
Voice | π¨ Build | Add Whisper + TTS |
Analytics | π¨ Build | Add Plotly Dash |
Agent Builder | π¨ Build | Visual UI for agent creation |
4. Technology Stackβ
Existing (β Keep & Use)β
- Agent Framework: LangGraph
- Memory: SQLite-based system
- RAG: Hybrid retrieval + cross-encoder
- API: FastAPI
- Observability: Prometheus + LangSmith
- Security: JWT + guardrails + policies
New (π¨ Add)β
- Intent/Dialogue: Rasa NLU + Rasa Core
- NLP: spaCy + NLTK
- UI (Production): Chainlit
- UI (Demos): Streamlit + Gradio
- Channels: Slack SDK, Telegram SDK, Bot Framework
- Voice: OpenAI Whisper + OpenAI TTS / Piper TTS
- Analytics: Plotly Dash
- Advanced: AutoGen (multi-agent)
5. Implementation Phasesβ
Phase 1: Core (Weeks 1-2)
βββ Install dependencies
βββ Build conversational layer
βββ Create API endpoints
βββ Build Streamlit demo
Phase 2: UI (Weeks 3-4)
βββ Deploy Chainlit
βββ Build Gradio interface
βββ Start React components
Phase 3: Multi-Channel (Week 5)
βββ Slack integration
βββ Telegram integration
βββ Teams integration
Phase 4: Voice (Week 6)
βββ Speech-to-text
βββ Text-to-speech
βββ Voice API
Phase 5: Agent Builder (Weeks 7-8)
βββ Configuration schema
βββ Visual builder UI
βββ Agent registry
Phase 6: Analytics (Week 9)
βββ Conversation analytics
βββ Performance metrics
βββ Dashboard
Phase 7: Advanced (Week 10)
βββ A/B testing
βββ Multi-agent collab
βββ Production polish
π― Key Featuresβ
1. Multi-Turn Conversationsβ
- Intent recognition with Rasa
- Context-aware dialogue management
- Entity extraction and slot filling
- Follow-up questions
2. Multi-Channel Deploymentβ
- Web interface (Chainlit)
- Slack bot
- Telegram bot
- Microsoft Teams bot
- Generic webhook adapter
3. Voice-Enabledβ
- Speech-to-text (Whisper)
- Text-to-speech (OpenAI TTS / Piper)
- Streaming audio
- Multi-language support
4. No-Code Agent Builderβ
- Visual agent creation
- Tool selection interface
- Prompt template editor
- Policy configuration
- Testing playground
5. Analytics & Insightsβ
- Conversation volume
- User engagement
- Response times
- Agent performance
- Cost tracking
6. Production Featuresβ
- Authentication & authorization
- Rate limiting
- Safety guardrails
- PII filtering
- Cost tracking
- A/B testing
π° Cost Analysisβ
Using Open-Source Librariesβ
- Development: ~$3,000
- Infrastructure: ~$900/month
- LLM Costs: ~$2,250/month (1000 users)
- Total Year 1: ~$41,000
Building from Scratchβ
- Development: ~$255,000
- Infrastructure: ~$900/month
- LLM Costs: ~$2,250/month (1000 users)
- Total Year 1: ~$293,000
π‘ Savings: ~$252,000 (86%) by using open-source!
π Success Metricsβ
Technicalβ
- β Response time < 2s (text)
- β Response time < 5s (voice)
- β Uptime 99.9%
- β 100+ concurrent users
- β Error rate < 0.1%
Businessβ
- β User satisfaction > 4.0/5.0
- β Conversation completion > 80%
- β Escalation rate < 10%
- β Agent usage > 50%
Qualityβ
- β Intent accuracy > 90%
- β Entity extraction > 85%
- β Answer relevance > 90%
- β Safety compliance 100%
π Getting Startedβ
Step 1: Read the Plansβ
- Start with Planning Summary
- Review Quick Reference
- Study Complete Plan if implementing
Step 2: Set Up Environmentβ
# Install core dependencies
pip install rasa>=3.6.0
pip install chainlit>=1.0.0
pip install streamlit>=1.28.0
pip install spacy>=3.7.0
python -m spacy download en_core_web_lg
# Install channel SDKs
pip install slack-sdk>=3.26.0 slack-bolt>=1.18.0
pip install python-telegram-bot>=20.7
pip install botbuilder-core>=4.16.0
# Install voice
pip install openai-whisper>=20231117
pip install piper-tts>=1.2.0
# Install analytics
pip install dash>=2.14.0 plotly>=5.18.0
Step 3: Create Project Structureβ
# Create new directories
mkdir -p packages/conversational
mkdir -p packages/channels
mkdir -p packages/voice
mkdir -p apps/chatbot_ui
mkdir -p examples/chatbot
Step 4: Build & Testβ
# Create basic demo
cd examples/chatbot
touch streamlit_demo.py
# Run demo
streamlit run streamlit_demo.py
π Additional Resourcesβ
Documentationβ
- Rasa: https://rasa.com/docs/
- Chainlit: https://docs.chainlit.io/
- LangGraph: https://python.langchain.com/docs/langgraph
- spaCy: https://spacy.io/
Tutorialsβ
- Rasa Playground: https://rasa.com/docs/rasa/playground
- Chainlit Quickstart: https://docs.chainlit.io/get-started/overview
- LangGraph Examples: https://github.com/langchain-ai/langgraph/tree/main/examples
Communityβ
- Rasa Forum: https://forum.rasa.com/
- Chainlit Discord: https://discord.gg/chainlit
- LangChain Discord: https://discord.gg/langchain
β FAQβ
Q: Why not use only Rasa?β
A: Our LangGraph agents are production-ready with advanced RAG, reranking, and tool integration. We use Rasa for intent/dialogue and LangGraph for orchestration.
Q: Why not build from scratch?β
A: We'd spend 3-4x more time and money. Open-source libraries are battle-tested and integrate well.
Q: What's the learning curve?β
A: ~3-4 weeks for team proficiency. Rasa is the steepest, but worth it.
Q: Can we customize the UI?β
A: Yes! Use Chainlit for quick deployment, or build custom React UI for full control.
Q: What about data privacy?β
A: Rasa and Chainlit can run self-hosted. Use local Whisper for privacy-critical voice.
π Supportβ
Questions?β
- Check the Complete Plan for detailed answers
- Review Library Comparison for technology decisions
Issues?β
- Create an issue in the repository
- Check existing documentation
- Consult community forums
Ready to build? Start with the Planning Summary! π