Skip to main content

Chatbot & AI Agent Creation

πŸ“š Documentation Index​

This feature provides a complete chatbot and AI agent creation platform built on top of our existing LangGraph infrastructure.


🎯 Quick Start​

New to This Feature?​

Start here: Planning Summary (5 min read)

Ready to Implement?​

Read: Quick Reference (15 min read)

Need Full Details?​

Read: Complete Implementation Plan (1 hour read)

Evaluating Libraries?​

Read: Library Comparison Matrix (30 min read)


πŸ“– Documentation Structure​

1. Planning Documents​

DocumentDescriptionTime to Read
Planning SummaryExecutive summary with key decisions5 minutes
Quick ReferenceTL;DR for developers15 minutes
Complete PlanDetailed implementation plan60 minutes
Library ComparisonTechnology stack evaluation30 minutes
Planning Complete SummaryFinal planning status & checklist10 minutes

2. Architecture​

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ CLIENT LAYER β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Web UI β”‚ Mobile β”‚ Slack β”‚ Teams β”‚ WhatsApp β”‚
β”‚ (Chainlit) β”‚ App β”‚ Bot β”‚ Bot β”‚ Bot β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
β”‚
β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ API GATEWAY (FastAPI) βœ… β”‚
β”‚ β€’ Authentication β€’ Rate Limiting β€’ WebSocket β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
β”‚
β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ CONVERSATIONAL LAYER (NEW) β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚ β”‚ Intent │───▢│ Dialogue │───▢│ Entity β”‚ β”‚
β”‚ β”‚ Recognition β”‚ β”‚ Management β”‚ β”‚ Extraction β”‚ β”‚
β”‚ β”‚ (Rasa) β”‚ β”‚ (Rasa) β”‚ β”‚ (spaCy) β”‚ β”‚
β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
β”‚
β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ AGENT LAYER (LangGraph) βœ… β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚ β”‚ Medical β”‚ β”‚Complianceβ”‚ β”‚ IT β”‚ β”‚ Custom β”‚ β”‚
β”‚ β”‚ Agent β”‚ β”‚ Agent β”‚ β”‚ Support β”‚ β”‚ Agents β”‚ β”‚
β”‚ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β”‚
β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β”‚ β”‚ β”‚
β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚ β”‚ Tool Registry βœ… β”‚ β”‚
β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
β”‚
β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ KNOWLEDGE & DATA LAYER βœ… β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚ β”‚ RAG β”‚ β”‚ Memory β”‚ β”‚ Vector β”‚ β”‚
β”‚ β”‚ Pipeline β”‚ β”‚ System β”‚ β”‚ Store β”‚ β”‚
β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

βœ… = Already implemented

3. What We Have vs. What We Need​

ComponentStatusDetails
Agent Frameworkβœ… CompleteLangGraph-based, 4 specialized agents
Memory Systemβœ… CompleteSQLite, thread-based sessions
RAG Pipelineβœ… CompleteHybrid retrieval + reranking
API Infrastructureβœ… CompleteFastAPI + auth + rate limiting
Observabilityβœ… CompleteMetrics, tracing, logging
Intent RecognitionπŸ”¨ BuildAdd Rasa NLU
Dialogue ManagementπŸ”¨ BuildAdd Rasa Core
Chat UIπŸ”¨ BuildAdd Chainlit + Streamlit
Multi-ChannelπŸ”¨ BuildAdd Slack, Teams, Telegram
VoiceπŸ”¨ BuildAdd Whisper + TTS
AnalyticsπŸ”¨ BuildAdd Plotly Dash
Agent BuilderπŸ”¨ BuildVisual UI for agent creation

4. Technology Stack​

Existing (βœ… Keep & Use)​

  • Agent Framework: LangGraph
  • Memory: SQLite-based system
  • RAG: Hybrid retrieval + cross-encoder
  • API: FastAPI
  • Observability: Prometheus + LangSmith
  • Security: JWT + guardrails + policies

New (πŸ”¨ Add)​

  • Intent/Dialogue: Rasa NLU + Rasa Core
  • NLP: spaCy + NLTK
  • UI (Production): Chainlit
  • UI (Demos): Streamlit + Gradio
  • Channels: Slack SDK, Telegram SDK, Bot Framework
  • Voice: OpenAI Whisper + OpenAI TTS / Piper TTS
  • Analytics: Plotly Dash
  • Advanced: AutoGen (multi-agent)

5. Implementation Phases​

Phase 1: Core (Weeks 1-2)
β”œβ”€β”€ Install dependencies
β”œβ”€β”€ Build conversational layer
β”œβ”€β”€ Create API endpoints
└── Build Streamlit demo

Phase 2: UI (Weeks 3-4)
β”œβ”€β”€ Deploy Chainlit
β”œβ”€β”€ Build Gradio interface
└── Start React components

Phase 3: Multi-Channel (Week 5)
β”œβ”€β”€ Slack integration
β”œβ”€β”€ Telegram integration
└── Teams integration

Phase 4: Voice (Week 6)
β”œβ”€β”€ Speech-to-text
β”œβ”€β”€ Text-to-speech
└── Voice API

Phase 5: Agent Builder (Weeks 7-8)
β”œβ”€β”€ Configuration schema
β”œβ”€β”€ Visual builder UI
└── Agent registry

Phase 6: Analytics (Week 9)
β”œβ”€β”€ Conversation analytics
β”œβ”€β”€ Performance metrics
└── Dashboard

Phase 7: Advanced (Week 10)
β”œβ”€β”€ A/B testing
β”œβ”€β”€ Multi-agent collab
└── Production polish

🎯 Key Features​

1. Multi-Turn Conversations​

  • Intent recognition with Rasa
  • Context-aware dialogue management
  • Entity extraction and slot filling
  • Follow-up questions

2. Multi-Channel Deployment​

  • Web interface (Chainlit)
  • Slack bot
  • Telegram bot
  • Microsoft Teams bot
  • Generic webhook adapter

3. Voice-Enabled​

  • Speech-to-text (Whisper)
  • Text-to-speech (OpenAI TTS / Piper)
  • Streaming audio
  • Multi-language support

4. No-Code Agent Builder​

  • Visual agent creation
  • Tool selection interface
  • Prompt template editor
  • Policy configuration
  • Testing playground

5. Analytics & Insights​

  • Conversation volume
  • User engagement
  • Response times
  • Agent performance
  • Cost tracking

6. Production Features​

  • Authentication & authorization
  • Rate limiting
  • Safety guardrails
  • PII filtering
  • Cost tracking
  • A/B testing

πŸ’° Cost Analysis​

Using Open-Source Libraries​

  • Development: ~$3,000
  • Infrastructure: ~$900/month
  • LLM Costs: ~$2,250/month (1000 users)
  • Total Year 1: ~$41,000

Building from Scratch​

  • Development: ~$255,000
  • Infrastructure: ~$900/month
  • LLM Costs: ~$2,250/month (1000 users)
  • Total Year 1: ~$293,000

πŸ’‘ Savings: ~$252,000 (86%) by using open-source!


πŸ“Š Success Metrics​

Technical​

  • βœ… Response time < 2s (text)
  • βœ… Response time < 5s (voice)
  • βœ… Uptime 99.9%
  • βœ… 100+ concurrent users
  • βœ… Error rate < 0.1%

Business​

  • βœ… User satisfaction > 4.0/5.0
  • βœ… Conversation completion > 80%
  • βœ… Escalation rate < 10%
  • βœ… Agent usage > 50%

Quality​

  • βœ… Intent accuracy > 90%
  • βœ… Entity extraction > 85%
  • βœ… Answer relevance > 90%
  • βœ… Safety compliance 100%

πŸš€ Getting Started​

Step 1: Read the Plans​

  1. Start with Planning Summary
  2. Review Quick Reference
  3. Study Complete Plan if implementing

Step 2: Set Up Environment​

# Install core dependencies
pip install rasa>=3.6.0
pip install chainlit>=1.0.0
pip install streamlit>=1.28.0
pip install spacy>=3.7.0
python -m spacy download en_core_web_lg

# Install channel SDKs
pip install slack-sdk>=3.26.0 slack-bolt>=1.18.0
pip install python-telegram-bot>=20.7
pip install botbuilder-core>=4.16.0

# Install voice
pip install openai-whisper>=20231117
pip install piper-tts>=1.2.0

# Install analytics
pip install dash>=2.14.0 plotly>=5.18.0

Step 3: Create Project Structure​

# Create new directories
mkdir -p packages/conversational
mkdir -p packages/channels
mkdir -p packages/voice
mkdir -p apps/chatbot_ui
mkdir -p examples/chatbot

Step 4: Build & Test​

# Create basic demo
cd examples/chatbot
touch streamlit_demo.py

# Run demo
streamlit run streamlit_demo.py

πŸ“š Additional Resources​

Documentation​

Tutorials​

Community​


❓ FAQ​

Q: Why not use only Rasa?​

A: Our LangGraph agents are production-ready with advanced RAG, reranking, and tool integration. We use Rasa for intent/dialogue and LangGraph for orchestration.

Q: Why not build from scratch?​

A: We'd spend 3-4x more time and money. Open-source libraries are battle-tested and integrate well.

Q: What's the learning curve?​

A: ~3-4 weeks for team proficiency. Rasa is the steepest, but worth it.

Q: Can we customize the UI?​

A: Yes! Use Chainlit for quick deployment, or build custom React UI for full control.

Q: What about data privacy?​

A: Rasa and Chainlit can run self-hosted. Use local Whisper for privacy-critical voice.


πŸ“ž Support​

Questions?​

Issues?​

  • Create an issue in the repository
  • Check existing documentation
  • Consult community forums

Ready to build? Start with the Planning Summary! πŸš€