Skip to main content

Manufacturing Quality Control Assistant

Scenario Overview

A manufacturing company needs an AI system to help quality control engineers troubleshoot production issues and maintain quality standards. The system must be able to:

  • Handle complex manufacturing terminology and processes
  • Provide systematic troubleshooting approaches
  • Learn from resolved cases to improve future responses
  • Support different product lines and manufacturing processes
  • Maintain quality standards and compliance requirements

User Journey

1. Quality Engineer Query

User: "Why are we getting surface defects on batch #12345 of aluminum parts?"

2. System Response Flow

Step 1: Manufacturing Query Understanding

# Manufacturing query expansion with process terminology
expanded_query = manufacturing_expander.expand(
query="Why are we getting surface defects on batch #12345 of aluminum parts?",
domain="manufacturing",
context={
"user_role": "quality_engineer",
"product_line": "aluminum_parts",
"issue_type": "surface_defects",
"batch_id": "12345"
}
)

# Results in:
# - "surface defects" → "surface imperfections", "finish issues", "cosmetic defects"
# - "aluminum parts" → "aluminum components", "aluminum products", "aluminum castings"
# - "batch #12345" → "production batch", "lot number", "manufacturing batch"

Step 2: Quality Control Document Retrieval

# Search quality control procedures and defect databases
retrieval_results = hybrid_retriever.retrieve(
query=expanded_query,
k=25, # More candidates for comprehensive troubleshooting
filters={
"product_line": "aluminum_parts",
"issue_type": "surface_defects",
"document_type": "quality_procedures",
"priority": "high"
}
)

Step 3: Manufacturing Reranking

# Rerank based on manufacturing relevance and case similarity
reranked_results = manufacturing_reranker.rerank(
query=expanded_query,
documents=retrieval_results,
context={
"product_line": "aluminum_parts",
"issue_type": "surface_defects",
"manufacturing_process": "machining"
},
top_k=10
)

Step 4: Quality Control Response Generation

# Generate systematic troubleshooting response
response = quality_generator.generate(
query=expanded_query,
context=reranked_results,
format="troubleshooting_guide"
)

3. System Response

# Surface Defects Troubleshooting Guide - Batch #12345

## Issue Analysis
**Product**: Aluminum parts (Batch #12345)
**Defect Type**: Surface defects
**Severity**: High (affecting product quality)
**Date Reported**: 2024-01-15

## Systematic Troubleshooting Approach

### 1. **Immediate Inspection**
- **Visual Inspection**: Check for specific defect patterns
- Scratches, gouges, or tool marks
- Discoloration or oxidation
- Rough surface finish
- Inconsistent texture

- **Measurement Verification**: Confirm dimensional accuracy
- Surface roughness measurements
- Dimensional tolerances
- Geometric specifications

### 2. **Process Parameter Review**
- **Machining Parameters**:
- Cutting speed: Check if within recommended range
- Feed rate: Verify optimal feed rate for aluminum
- Depth of cut: Ensure appropriate cutting depth
- Coolant flow: Verify adequate coolant supply

- **Tool Condition**:
- Tool wear: Check for excessive wear
- Tool geometry: Verify proper tool angles
- Tool material: Ensure correct tool grade
- Tool setup: Check tool alignment and positioning

### 3. **Material Analysis**
- **Aluminum Grade**: Verify correct alloy specification
- **Material Properties**: Check hardness and machinability
- **Surface Preparation**: Ensure proper cleaning and preparation
- **Contamination**: Check for foreign material or debris

### 4. **Equipment Inspection**
- **Machine Condition**: Check for machine vibration or misalignment
- **Fixture Setup**: Verify proper part clamping and positioning
- **Coolant System**: Ensure proper coolant concentration and flow
- **Environmental Factors**: Check temperature and humidity

## Common Causes and Solutions

### **Tool-Related Issues**
- **Problem**: Dull or damaged cutting tools
- **Solution**: Replace tools, check tool geometry
- **Prevention**: Implement tool life monitoring

### **Process Parameter Issues**
- **Problem**: Incorrect cutting speeds or feeds
- **Solution**: Adjust parameters per material specifications
- **Prevention**: Use process parameter monitoring

### **Material Issues**
- **Problem**: Incorrect aluminum grade or contamination
- **Solution**: Verify material specifications, clean material
- **Prevention**: Implement material inspection procedures

### **Equipment Issues**
- **Problem**: Machine vibration or misalignment
- **Solution**: Check machine condition, realign if necessary
- **Prevention**: Regular machine maintenance

## Recommended Actions

1. **Immediate**: Stop production of affected batch
2. **Inspection**: Complete detailed defect analysis
3. **Corrective Action**: Implement identified solutions
4. **Verification**: Test corrected process with small batch
5. **Prevention**: Update procedures and training

## Quality Control Documentation

- **Defect Report**: Document all findings and actions
- **Corrective Action Plan**: Implement systematic improvements
- **Preventive Measures**: Update procedures and training
- **Follow-up**: Monitor subsequent batches for recurrence

## Escalation Requirements

- **Immediate Escalation**: If defects affect safety or compliance
- **Management Notification**: For production delays or cost impact
- **Customer Communication**: If defects affect customer deliveries
- **Supplier Notification**: If defects are material-related

## Next Steps

1. **Complete Inspection**: Follow systematic troubleshooting approach
2. **Document Findings**: Record all observations and measurements
3. **Implement Solutions**: Apply identified corrective actions
4. **Verify Results**: Test corrected process
5. **Update Procedures**: Improve processes based on learnings

Implementation Code

1. Manufacturing Configuration

# config/manufacturing_config.py
from packages.rag import HybridRetriever, CrossEncoderReranker
from packages.agents import RAGAgentGraph, AgentConfig
from packages.rag.query_expansion import ManufacturingQueryExpander
from packages.observability import MetricsCollector, StructuredLogger

class ManufacturingConfig:
def __init__(self):
# Manufacturing query expansion
self.manufacturing_expander = ManufacturingQueryExpander(
domain="manufacturing",
manufacturing_terminology_file="data/manufacturing_terminology.json",
process_abbreviations_file="data/process_abbreviations.json"
)

# Hybrid retrieval with manufacturing focus
self.hybrid_retriever = HybridRetriever(
vector_retriever=VectorRetriever(
model_name="text-embedding-3-large",
vector_store=OpenSearchStore(
index_name="manufacturing_knowledge_base"
)
),
bm25_retriever=BM25Retriever(
index_path="data/manufacturing_bm25_index"
),
alpha=0.6 # Favor vector search for manufacturing terminology
)

# Manufacturing-specific reranking
self.manufacturing_reranker = ManufacturingReranker(
model_name="cross-encoder/ms-marco-MiniLM-L-6-v2",
case_similarity_weight=0.8,
process_relevance_weight=0.9,
solution_effectiveness_weight=0.7
)

# Agent configuration for manufacturing domain
self.agent_config = AgentConfig(
model_name="gpt-4-turbo-preview",
temperature=0.1,
max_steps=6,
retrieval_k=25,
rerank_k=10,
enable_web_search=False, # Disable web search for manufacturing accuracy
enable_escalation=True,
cost_limit=0.12
)

2. Manufacturing Knowledge Base

# data/manufacturing_knowledge_base.json
{
"documents": [
{
"id": "aluminum_surface_defects_001",
"title": "Aluminum Surface Defects Troubleshooting Guide",
"content": "Comprehensive guide to troubleshooting aluminum surface defects...",
"metadata": {
"product_line": "aluminum_parts",
"issue_type": "surface_defects",
"manufacturing_process": "machining",
"priority": "high",
"last_updated": "2024-01-10",
"source": "Quality Control Department",
"effectiveness_rating": 0.85
}
}
]
}

3. Manufacturing Agent Implementation

# agents/manufacturing_agent.py
import asyncio
from typing import Dict, Any, List
from packages.agents import RAGAgentGraph
from packages.observability import MetricsCollector, StructuredLogger

class ManufacturingAgent:
def __init__(self, config: ManufacturingConfig):
self.config = config
self.agent_graph = RAGAgentGraph(
config=config.agent_config,
tool_registry=config.tool_registry
)
self.metrics = config.metrics_collector
self.logger = StructuredLogger()

async def handle_quality_query(self, query: str, user_context: Dict[str, Any]) -> Dict[str, Any]:
"""Handle manufacturing quality query with full pipeline."""
start_time = time.time()

try:
# Step 1: Manufacturing query expansion
expanded_query = await self._expand_manufacturing_query(query, user_context)

# Step 2: Quality control document retrieval
retrieval_results = await self._retrieve_quality_documents(expanded_query, user_context)

# Step 3: Manufacturing reranking
reranked_results = await self._rerank_manufacturing_documents(expanded_query, retrieval_results, user_context)

# Step 4: Quality control response generation
response = await self.agent_graph.ainvoke({
"query": expanded_query,
"retrieved_docs": retrieval_results,
"reranked_docs": reranked_results,
"user_context": user_context,
"format": "troubleshooting_guide"
})

# Step 5: Quality insights
insights = await self._generate_quality_insights(response, user_context)
response["quality_insights"] = insights

# Step 6: Logging and metrics
await self._log_quality_interaction(query, response, user_context)

return response

except Exception as e:
self.logger.error(f"Quality query failed: {e}")
return await self._handle_quality_error(query, e, user_context)

async def _generate_quality_insights(self, response: Dict[str, Any], user_context: Dict[str, Any]) -> Dict[str, Any]:
"""Generate quality insights and recommendations."""
insights = {
"defect_patterns": await self._analyze_defect_patterns(response),
"process_improvements": await self._suggest_process_improvements(response, user_context),
"preventive_measures": await self._recommend_preventive_measures(response, user_context),
"training_needs": await self._identify_training_needs(response, user_context)
}

return insights

Features Demonstrated

1. Query Performance Analysis

  • Optimizing for manufacturing terminology
  • Process-specific query understanding
  • Quality control context recognition

2. Deduplication

  • Ensuring no conflicting quality procedures
  • Consistent troubleshooting approaches
  • Unified quality standards

3. Analytics & BI

  • Quality trend analysis and pattern recognition
  • Defect pattern identification
  • Process improvement recommendations

4. Error Handling

  • Graceful handling of incomplete quality data
  • Fallback responses for unclear issues
  • Escalation for complex quality problems

5. Rate Limiting

  • Ensuring fair access during production issues
  • Priority-based query processing
  • Resource allocation for critical issues

6. Observability

  • Comprehensive monitoring of quality assistance effectiveness
  • Performance tracking and optimization
  • Quality improvement metrics

Next Steps

  1. Deploy the manufacturing system with proper quality controls
  2. Ingest manufacturing knowledge base with proper metadata
  3. Configure quality analytics and trend monitoring
  4. Train quality staff on the new system
  5. Monitor quality effectiveness and continuous improvement

Ready to implement? Start with the manufacturing knowledge base setup and work through each component step by step! 🏭