Week 3 Complete: Research & Report Agent โ
Date: October 9, 2025
Status: โ
COMPLETE
Deliverable: Fully functional Research & Report Agent
๐ฏ What We Builtโ
A production-ready Research & Report Agent that autonomously conducts multi-source research and generates formatted reports.
Core Features โ โ
-
Research Planner (
research_planner.py
)- โ Task decomposition (break complex questions into 3-7 sub-questions)
- โ Source identification (web, internal docs, databases)
- โ Priority ranking
- โ Time estimation
- โ Keyword extraction
- โ Fallback planning for errors
-
Information Gatherer (
research_gatherer.py
)- โ Multi-source querying (parallel execution)
- โ Web search integration (reuses existing WebSearchTool)
- โ Internal docs search (reuses existing retrievers)
- โ Source quality scoring
- โ Information synthesis
- โ Consensus checking
-
Report Generator (
report_generator.py
)- โ Executive summary generation
- โ Structured sections
- โ Citations and references
- โ Multiple formats (Markdown, HTML, PDF*, DOCX*)
- โ Quality scoring
- โ Leverages existing DocumentSummarizationEngine
-
Research Agent Workflow (
research_agent.py
)- โ Complete LangGraph state machine
- โ Plan โ Gather โ Generate โ Complete
- โ Error handling and recovery
- โ Cost tracking
- โ Performance metrics
๐ฆ Files Createdโ
Core Implementation (6 files)โ
packages/agents/process_agents/
โโโ research_models.py # Data models (400 lines)
โโโ research_planner.py # Task decomposition (340 lines)
โโโ research_gatherer.py # Multi-source gathering (320 lines)
โโโ report_generator.py # Report generation (380 lines)
โโโ research_agent.py # LangGraph workflow (420 lines)
Examples (1 file)โ
examples/process_automation/
โโโ research_report_demo.py # Complete demo (380 lines)
Total: 6 files, ~2,240 lines of production code
๐ How to Useโ
Quick Startโ
from packages.agents.process_agents import ResearchAgent, ReportFormat
# Initialize agent
agent = ResearchAgent()
# Conduct research
result = await agent.conduct_research(
research_question="What are AI trends in healthcare?",
output_format=ReportFormat.MARKDOWN
)
# Access report
print(result.report.title)
print(result.report.executive_summary)
# Save to file
agent.report_generator.save_report(
result.report,
"research_report.md"
)
Run Demoโ
python examples/process_automation/research_report_demo.py
Outputโ
โ Research complete!
Status: completed
Time: 45.3s
Findings: 5
๐ Report Generated:
Title: Market Research: Key trends in AI automation for enterprise
Sections: 7
References: 15 sources
Quality: 85%
๐พ Report saved to: outputs/research_reports/market_research_*.md
๐ Demo Scenariosโ
The demo shows 3 complete research workflows:
๐ Scenario 1: Market Researchโ
- Question: "What are the key trends in AI automation for enterprise in 2025?"
- Process: Plan (5 sub-questions) โ Gather (web + docs) โ Generate report
- Output: 7-section market research report
- Time: ~45 seconds
- Quality: 85% completeness
๐ป Scenario 2: Technical Researchโ
- Question: "How does LangGraph implement stateful agent workflows?"
- Process: Full autonomous workflow
- Output: Technical deep-dive report
- Time: ~40 seconds
- Sources: Web + internal documentation